PRECISION MEDICINE FOR PANIC DISORDER

 \rightarrow

"Development of Multidimensional Neurofunctional Biotypes and Tailored Treatment Strategies for Panic Disorder"

Minji Bang, M.D., Ph.D.

Assistant Professor of Psychiatry

CHA Bundang Medical Center, CHA University School of Medicine

IN THE REALM OF EMPIRICAL PSYCHIATRY

Introduction

Introduction

WHY NOT **POSSIBLE**?

Introduction

\rightarrow

MEDICINE

Brain disorders? Precisely

Precision medicine comes to psychiatry

Deconstructed, parsed, and diagnosed.

A hypothetical example illustrates how precision medicine might deconstruct traditional symptom-based categories. Patients with a range of mood disorders are studied across several analytical platforms to parse current heterogeneous syndromes into homogeneous clusters.

Insel, T. R., & Cuthbert, B. N. (2015). Brain disorders? Precisely. *Science*, 348(6234), 499-500.

FUTURE PLANNING FOR PRECISION PSYCHIATRY

Research plan

 \rightarrow

[비교검증을 통한 생물학적 유형화의 타당성 확립]

[분당차병원 공황장애 코호트]

FUTURE PLANNING FOR PRECISION PSYCHIATRY

Research plan

CURRENT GOALS FOR PRECISION PSYCHIATRY

Research goals

- → Early trauma is one of the important risk factors for the development of panic disorder (PD).
- → Traumatized individuals can be increasingly responsive to minor life events by sensitization and kindling mechanisms of the fear system.
- → The maturation of the hippocampus occurs majorly during the early years of life, possibly making this structure vulnerable to early life stress.
- → Structural alterations in the hippocampus may therefore be a correlate of early exposure to stress in PD.

Hippocampal subregions: a) head, b) body, c) tail

LI of Hippocampal Tail

0.2

 \rightarrow

10

motional)

Ē

HIGH RIGHTWARD LATERALITY OF THE HIPPOCAMPUS

2a.

10

R-SF (Physical)

Preliminary results

Table 2. Multivariate	analysis of	variance on	volumes	of hippocampal	subfields	between	panic	disorder	and
healthy controls									

	PD	HCs		
	(n = 27)	(n = 27)	F	р
Left hippocampus (mm ³)				
Head	1741.34 ± 169.84	1846.39 ± 219.90	1.45	.234
Body	1270.13 ± 79.43	1322.03 ± 150.74	0.90	.348
Tail	623.48 ± 89.79	613.95 ± 71.29	0.42	.520
Right hippocampus (mm ³)				
Head	1841.46 ± 177.25	1916.31 ± 216.97	0.36	.550
Body	1348.33 ± 117.18	1309.59 ± 121.82	3.90	.054
Tail	656.03 ± 82.79	601.41 ± 67.38	8.30	.006

LI of Hippocampal Tail

Table 3. Multivariate analysis of variance on laterality of hippocampal subfields between panic disorder and healthy controls

	PD	HCs		
	(n = 27)	(n = 27)	F	р
Laterality index				
Head	$.056\pm.061$	$.038 \pm .059$	1.16	.288
Body	$.058\pm.057$	$\textbf{007}\pm.065$	15.59	<.001
Tail	$.053 \pm .107$	$\textbf{020}\pm.131$	4.98	.030

 \rightarrow The rightward increases in the lateralization of the hippocampal tail, which may be associated with early trauma, may confer susceptibility to PD.

NEURAL MARKER OF EARLY SEXUAL TRAUMA

Preliminary results

→ Higher levels of sexual trauma were significantly associated with increased FA / decreased MD and RD in a cluster of the right tapetum.

Table 2. Exploratory Pearson correlation analysis between the DTI indices of the right tapetum and the treatment response in patients with panic disorder

	Treatment Response to Pharmacotherapy		
	8 weeks	1 year	
Fractional Anisotropy (FA)	r = -0.071 p = 0.567	r = -0.267 p = 0.039*	
Mean Diffusivity (MD)	r = 0.002 p = 0.986	r = 0.183 p = 0.169	
Axial Diffusivity (AD)	r = -0.066 p = 0.598	r = -0.029 p = 0.825	
Radial Diffusivity (RD)	r = 0.051 p = 0.685	r = 0.270 p = 0.041*	

- → FAs in a cluster of the right tapetum were positively associated with neuroticism, which is a trait-vulnerability marker of panic disorder.
- → Furthermore, FAs and RDs in the right tapetum were correlated with poor treatment response to pharmacotherapy after 1 year.
- → The tapetum marker may quantify an individual's liability to panic disorder and predict treatment response.

- → Agoraphobia, which is frequently accompanied by PD, causes substantial impairments in social-occupational functioning in affected individuals.
- → **Female sex** is the strongest predictor of agoraphobia.
- → The sensory-related white matter tracts, including the fronto-occipital fasciculus and uncinate fasciculus, have been implicated in anxiety and agoraphobia.

Regions of Interest

WHITE MATTER ASSOCIATED WITH AGORAPHOBIA

Preliminary results

- → In PD with agoraphobia, FA values of the right uncinate fasciculus was significantly correlation with the scores of the BDI, ASI-total, and ASIcognitive dyscontrol.
- → Impaired connectivity of the fronto-temporal white matter may underlie agoraphobia in PD.

- → PD has been known to be associated with white matter changes in the fronto-limbic regions and posterior part of the default mode network.
- → These regions may be affected and altered by anti-depressive treatment.
- → The association between white matter alterations and the treatment response to pharmacotherapy was explored in patients with PD, by comparing treatment responders and non-responders.

Kim, S. W., Kim, M. K., Kim, B., & Lee, S. H. (2019). White matter connectivity differences between treatment responders and non-responders in patients with panic disorder. *Journal of Affective Disorders*.

TREATMENT RESPONDER VS. NON-RESPONDER

Preliminary results

Table 2 Centered regions showing significant increases of fractional anisotropy (FA) values in NRPD compared to RPD.

Cluster size Peak coordinates		z	Anatomical locations		
(voxels) ^a	(mm)†				
1577	34, -17, 56	4.42	Frontal lobe, precentral gyrus, right		
1311	26,-72,28	4.24	Precuneus, right		
658	18,-43,1	5.41	Limbic Lobe, parahippocampal gyrus		
380	25,-30,29	3.50	Posterior corona radiata, right		
300	33,-72,5	3.91	Posterior thalamic radiation, right		
158	16,-40,23	3.57	Posterior part of corpus callosum near cingulate gyrus		

→ Intensified white matter connectivity of the modified fear network may be associated with treatment failure and more severe symptoms in PD.

Kim, S. W., Kim, M. K., Kim, B., & Lee, S. H. (2019). White matter connectivity differences between treatment responders and non-responders in patients with panic disorder. *Journal of Affective Disorders*.

→ White matter dysconnectivity in the limbic system underlies the neurobiolgy of panic disorder.

- → Mindfulness-based cognitive therapy (MBCT) as an adjuvant to pharmacotherapy has been suggested as an adequate treatment option for PD.
- → However, its effectiveness for relapse prevention remains to be established.
- → We aimed to assess the long-term effect of MBCT for PD in reducing relapse in patients on pharmacotherapy and investigate genetic and neuroimaging underpinnings associated with the adjuvant treatment of MBCT.

								Change from	previous block
	В	SE	Wald	р	HR	95% CI for B	-2LL	χ^2	р
Block 0							787.49		
Block 1							783.27	4.23	0.121
Education (years)	-0.07	0.05	1.54	0.215	0.94	0.85 - 1.04			
Monthly family income (KRW)	-0.001	0.001	0.98	0.322	1.00	1.00-1.00			
Block 2							763.57	19.70	< 0.001
Education (years)	-0.03	0.05	0.31	0.578	0.97	0.88 - 1.07			
Monthly family income (KRW)	-0.0002	0.001	0.08	0.783	1.00	1.00-1.00			
MBCT treatment	-1.06	0.25	18.60	< 0.001	0.35	0.21 - 0.56			
Block 3 ^a							759.41	4.15	0.042
Education (years)	-0.02	0.05	0.23	0.634	0.98	0.88 - 1.08			
Monthly family income (KRW)	-0.0002	0.001	0.07	0.789	1.00	0.99–1.00			
MBCT treatment	-1.01	0.25	16.68	< 0.001	0.36	0.22 - 0.59			
SS genotype of the 5- HTTLPR	-0.47	0.23	4.20	0.040	0.63	0.40 - 0.98			
Block 4 ^b							759.39	0.02	0.881
Education (years)	-0.02	0.05	0.23	0.632	0.98	0.88 - 1.08			
Monthly family income (KRW)	-0.0002	0.001	0.07	0.795	1.00	1.00 - 1.00			
MBCT treatment	-0.97	0.36	7.24	0.007	0.38	0.19-0.77			
SS genotype of the 5- HTTLPR	-0.44	0.28	2.55	0.110	0.64	0.37-1.11			
MBCT-by-5-HTTLPR	-0.07	0.48	0.02	0.881	0.93	0.36-2.38			

Table 2. Five-year long-term effect of MBCT and genotypes in relapse prevention in participants with PD on mADM (n = 218)

 \rightarrow

EFFECTIVENESS OF MBCT FOR RELAPSE PREVENTION

Preliminary results

 \rightarrow

NEURAL UNDERPINNINGS OF THE EFFECT OF MBCT

After 2 years

Baseline

Preliminary results

Fractional anisotropy

0.60

mADM only

Baseline

After 2 years

Fear of publicly observable anxiety reaction

Fear of cardiovascular symptom

Fear of cognitive dyscontrol

HCs
MBCT+mADM
mADM only Baseline After 2 years Baseline After 2 years Baseline After 2 years

Hippocampal cingulum

Baseline

After 2 years

M Bang et al., in submission

LIKE A TINY DOT IN THE SPACE...

Conclusion

THANK YOU FOR YOUR ATTENTION!