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Remodeling perineuronal nets of auditory
nervous system: novel therapeutic approach for
auditory processing disorders
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Central auditory neural plasticity after hearing loss
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Central auditory neural plasticity after hearing loss

 When the opposite (second) ear was implanted after 1.5 years, the
brainstem responses from this ear remained abnormally prolonged

despite up to 3 years of bilateral implant use.
(Goron KA et al. J Neurosci, 2012)
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Introduction: Perineuronal nets (PNNSs)

» Perineuronal nets (PNNs) are specialized extracellular matrix
components that consist of chondroitin sulfate proteoglycans
(CSPG).

« These CSPGs are found throughout the extracellular matrix, but are

highly dense around cortical parvalbumin (PV+) GABAergic
interneurons.

« While PV/PNN expression has been well studied in somatosensory
and visual cortex of rodents, focus on A1 is relatively recent and
sparse.
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Introduction: Roles of PNNs

* PNNSs protect PV+ inhibitory neurons from oxidative stress.

— Diesel extracted particle (DEP) activated oxidative stress and
inflammation and induced decreased number of interneuron and

unwrapped with PNNs. (Kim et al., Neurotoxicology, 2018)

 PNNs stabilize synapses and limit neuroplasticity. The PNNs are
fully developed and reach adult patterns at approximately 3 - 5

weeks of age, representing the end of the critical period that permits
neural p|astiC Changes_ (McRae,P.A. et al., J.Neurosci, 2007)
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Introduction: PNNSs in the auditory system

» Recent studies reported that a significant increase or decrease in
PNN intensity of deaf side following hearing l0ss. (congiiLiv et a1 2018)

* Neonatal conductive hearing loss has been shown to disrupt the
development of Cat-315-reactive PNNs in the rat superior olivary

complex. (Myers et al., Brain Res, 2012)

« Although the PV-positive cell densities were not changed, the PNNs
density attenuation was lasted at least 30 days following noise
exposure. (Anna Nguyen et al., Hear Res, 2017)
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Introduction: Cortical disinhibition
after hearing loss

* Hearing loss is associated with increased excitability in the central
auditory system, but the cellular correlates of such changes remain to
be characterized.

— Molecular studies indicate that in the brainstem, after 2 — 5 days post trauma, the
GABAergic activity is largely unchanged.

— At 2 months post trauma, excitatory activity remains decreased but the inhibitory one
is significantly increased. (Jos J. Eggermont. 2016)
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« The increase of excitability in the primary auditory cortex (A1) following
noise exposure has been suggested to be caused by the disinhibition.

(Llano,D.A. et al., J.Neurosci, 2012)



Obijectives

Hyvpothesis

1. Unilateral hearing loss may induce reactive changes of
contralateral synaptic changes accompanied with remodeling of
PNNSs.

2. Increased cortical excitability in noise-induced hearing loss could
be related with the attenuation of PNNSs.

3. Hearing impairment after as well as before the critical period might
be also accompanied by neural plastic changes.

Experiments in hearing loss models,

1. To investigate the excitatory and inhibitory changes
2. To explore the changes of PNNs

3. To evaluate the degradative enzymes of PNNs




Single-sided deaf:. neural activity changes

Neural plastic change of cortical and subcortical auditory neural pathway

Male B57BL/6 mice (postnatal 8 weeks old) Mn-enhanced magnetic resonance imaging (MEMRI)
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Single-sided deaf:. neural activity changes

1. Aural dominance changes following SSD
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2. Dilution of aural dominance in higher levels of the auditory neural system
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ABR threshold (dB SPL)

ABR threshold (dB SPL)

Single-sided deaf. Animal exposure
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Single-sided deaf: vesicular neural transporters
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« Both excitatory and inhibitory vesicular transporter expression levels were
increased after SSD in the ipsilateral side of A1.

« Auditory deafferentation in the contralateral side and the compensatory
potentiation of the ipsilateral cortical auditory nervous system.



Single-sided deaf. PNNs
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« The components or related molecules of PNNs, including aggrecan, MMP9, and
MMP14 were increased after SSD in the contralateral side. The mRNA expression
levels of neurocan and tenascin-C were increased after SSD in the ipsilateral side.

« The auditory deprivation induced the degradative changes of PNN in the contralateral
side (dominant side after decussation) and the synthetic changes of PNN in the

ipsilateral side (non-dominant side after decussation) of A1.
(Kim et al., submitted)



Single-sided deaf: Subcortical changes
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Gene Symbol Gene Description

SLC5A7 solute carrier family 5 (choline transporter), member 7

SLC18A3 solute carrier family 18 (vesicular acetylcholine), member 3

SLC6AS solute carrier family 6 (neurotransmitter transporter, glycine), member 5
svac synaptic vesicle glycoprotein 2C

S100A10 S100 calcium binding protein A10
FAM111A family with sequence similarity 111, member A
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Noise-Induced Hearing Loss: Animal exposures

ABR threshold (dB SPL)
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Noise-Induced Hearing Loss: PNNs
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« Brevican and neurocan expressions were decreased in the noise group.

« Brevican was reported to have a role in fast synaptic transmission, which was
supported by a knockout mouse study.  (Sonntag, M. et al, BMC biology, 2015)

* Neurocan is a component of PNNs and inhibits neuroplastic changes by
interacting with the dendritic receptors of semaphoring 3F and neural cell
adhesion molecule/ephrin type | receptor 3. (Suliivan, C.S. et al., Sci Rep, 2018)



Noise-Induced Hearing Loss: vesicular
transporters and matrix metalloproteinases
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« The glutamatergic neural transmission involving VGLUT1 and VGLUT2 were
decreased 1 month after noise exposure in this study.

« VGLUTZ2 was increased in the inferior colliculus.

« The degradative enzymes of MMP9 was increased in A1.

(Kim et al., submitted)



Noise-Induced Hearing Loss: presynaptic vesicular
transporters

 VGLUT1 expression is high in A1, and increased upto P21 in mice.

(Troy A.Hackeftt et al., Brain Struc Funct, 2016)
 Both VGLUT1 and VGAT expressions were decreased in the ventral
cochlear nucleus of age-related hearing loss rats.

(Juan C.Alvarado et al., Front Aging Neurosci, 2014)
The decrease of VGLUT1 imply the reduced glutamergic

transmission in noise-induced hearing loss.

» The cochlear insult increased the VGLUTZ2 expression in the dorsal
cochlear nucleus. (A.N.Heeringa et al., Neuroscience, 2016)

» The sources of VGLUTZ2 terminals in the IC are somatosensory and
vestibular terminals, while those of VGLUT1 is only in the ipsilateral A1.
(Tetsufumi Ito et al., Front Neuroanat, 20710)
The increase of VGLUT?Z2 in the inferior colliculus indicated the cross-modal

compensation which could be related with tinnitus.



Noise-Induced Hearing Loss: MMP9 and RAGE

« The MMP9 expression was increased in the A1 in the age-related
hearing loss model. (vang Dong et al, Mol Med Rep, 2018)

« Acute brain injury in meningitis up-regulated the MMP9 activities

and the high MMP9 level was related with the hearing loss.
(Lukas Muri et al., J Neuroinflammation, 2018)
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Noise-Induced Hearing Loss: RAGE shedding

RAGE IL1b IL6 NFkB

[l
o
¥
@
[ned
o
)
Il
o
)

3 Control
EB Noise

n
o
1
5
o
1

-

[
1

o

mRNA expression (folds)
-
mRNA expression (folds)
P

-
2]
1

-
o
1
-
o
1

[
o
1
[

L
o
1
&
o
1

mRNA expression (folds)
=
mRNA expression (folds)

Primary auditory cortex Primary auditory cortex Primary auditory cortex Primary auditory cortex

Intra (Nuclear) Extra (Cytosol) Antibody agastthe g PP

control White noise control White noise l_':'c I:Im:"_ :I e Rr-uEsl'Addlng .
LT RT LT RT LT RT LT RT A

RAGE RAGE

. e e— S— A >

RAGE

HDACL | GHD SHED SR | Actin | S S —

RAGE shedding

3 Control

6- Bl Noise L il | i
24
oL | (Braley A et al. J Biol Chem. 2016)

Primary auditory cortex

Ratio Intra-RAGE/Extra-RAGE



Conclusion

Cortical reorganization following hearing loss:

Single-sided deaf increased the presynaptic transporters and
components of PNNs in ipsilateral (non-dominant) side of A1.

On the other hands, the contralateral (dominant) side of A1
increased the degradative changes of PNNs.

Neural degeneration following hearing loss:

The noise-induced hearing loss resulted in the decreased PNNs
accompanied with decrease of presynaptic excitatory transmitter in
the A1.

The brevican and less amounts of neurocan were decreased in the
noise-induced hearing loss rats, which was probably mediated by
the increased level of MMP9 in the A1.




Future or Ongoing Studies

NBN+ChABC Ipsilateral

Cortical reorganization following hearing loss:
Restoration of neural plasticity
Degradation of PNNs using chondroitinase ABC.

Neural degeneration following hearing loss:
Prevention of PNNs degradation
MMP9 or ADAM10/secretase inhibitors

Molecular mechanisms for the impact of hearing loss on cognitive
function.

Down_regulated in CA3 Gene symbol Gene descrip.tion
SYT9 synaptotagmin 9
. . . SLITRK6 SLIT and NTRK like family member 6
Cholinergic synapse - Homo sapiens (human)
Choline metabolism in cancer - Homo sapiens (human) KCNJ16 potassium voltage-gated channel subfamily J member 16
Transmission across Chemical Synapses SLCSA7 solute carrier family 5 member 7
Protein-protein interactions at synapses CHRNA3 cholinergic receptor nicotinic alpha 3 subunit
Signaling by Type 1 Insulin-like Growth Factor 1 Receptor (IGF1R) SLC4AS solute carrier family 4 member 5
IGF1R signaling cascade SLC40A1 solute carrier family 40 member 1
IRS-related events triggered by IGF1R SLC5A3 solute carrier family 5 member 3
SLC-mediated transmembrane transport IGF2 insulin like growth factor 2
Neurona | System KL klotho
6 015 ‘1 1I_5 2‘ 25 KCNJ16 potassium voltage-gated channel subfamily J member 16
-log(P value) CHRNA3 cholinergic receptor nicotinic alpha 3 subunit




Thank you for attention!



