

Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium (hES-RPE) in Asian Stargardt disease patients

> Youngje Sung MD MS Won Kyung Song MD PhD Retinal Clinical Trial Lab (RCTL) CHA Bundang Medical Center CHA University Seongnam, Republic of Korea

- m/c inherited form of juvenile macular dystrophy
- A prevalence of **1 in 8000–10000**
- Associated with disease-causing mutations in the ABCA4 gene
- Autosomal recessive mode of inheritance
- Both clinically and genetically highly
 heterogeneous
- **Bilateral central visual loss**, dyschromatopsia, central scotoma
- No established treatment
- Characteristic macular atrophy and yellow– white flecks at the level of the retinal pigment epithelium (**RPE**) at the posterior pole

British Journal of Ophthalmology 101.1 (2017): 25-30. Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore.

RPE Clinical Trials

hES-RPE

(Human Embryonic Stem Cell Derived Retinal Pigment Epithelium)

Age-related macular degeneration (Advanced dry AMD) 2012~ Inherited macular degeneration (Stargardt Disease, SMD) 2013~

SCNT-RPE

(Somatic Cell Nuclear Transfer Stem Cell Derived Retinal Pigment Epithelium)

Age-related macular degeneration (Advanced dry AMD) 2017~

Publications from the clinical trials in Bundang CHAMC

STEM CELL REPORTS

Volume 4, Issue 5, 12 May 2015, Pages 860-872

Article

Treatment of Macular Degeneration Using Embryonic Stem Cell -Derived Retinal Pigment Epithelium: Preliminary Results in Asian Patients

Participants : total of 4 - 2 Dry AMD

- 2 SMD

<u>IP</u> :

- hES-RPE suspension 5x10⁴ cells

Follow up :

- 12 months

Outcome:

- BCVA (ETDRS)
 - Dry AMD +1 (FE -5), +9 (FE -20) SMD +12 (FE +9), +19 (FE =+9)
- 3/4 eyes subretinal pigmentation

Adverse events

- 1 eye choroidal neovascularization (CNV) requiring anti-VEGF
- 2 eyes epiretinal membrane (ERM) with pigmentations

Stem cell reports 4.5 (2015): 860-872.

The first Publications from hES-RPE Trials (U.S.)

Adverse Events

<u>Participants</u>: total of **18** - 9 Dry AMD (77 Y; 70-88)

- 9 SMD (50 Y; 20-71)

IP: hES-RPE suspension

-3 eyes each with $5x10^4$, $10x10^4$, $15x10^4$ cells

<u>Follow up</u>: 22 months - 4 < 12m.; 12 12-36 m.; 2 >36m.

Outcome BCVA at 12 months :

- < Dry AMD >
- 3 eyes improved > 15 letters
- 1 eye improved 13 letters
- 3 eyes stable
- < SMD >
- 3 eyes improved ≥ 15 letters
- 3 eyes stable
- 1 eye decreased by more than 10 letters
- No cell related adverse proliferation, rejection, or serious ocular or systemic safety issues
- Adverse events were associated with vitreoretinal surgery and immunosuppression
 - : Endophthalmitis 1, preretinal pigmentation 3, cataract 4, vitreal band 1
- ✤ 13 (72%)/ 18 patients ; patches of subretinal pigmentation.

The Lancet 379.9817 (2012): 713-720. *Stem cells 27.9 (2009): 2126-2135.*

Following reports from hES-RPE trial (U.K.)

AMERICAN ACADEMY OF OPHTHALMOLOGY*

Transplantation of Human Embryonic Stem **Cell-Derived Retinal Pigment Epithelial Cells** in Macular Degeneration

Manjit S. Mehat, PhD, FRCOphth,^{1,2,3} Venki Sundaram, MD, FRCOphth,^{1,2,3} Caterina Ripamonti, PhD,⁴ Anthony G. Robson, PhD,^{1,2} Alexander J. Smith, PhD,^{1,3} Shyamanga Borooah, PhD, FRCOphth,⁵ Martha Robinson, PhD,³ Adam N. Rosenthal, PhD, FRCOG,⁵ William Innes, MRCP,⁷ Richard G. Weleber, MD,⁸ Richard W.J. Lee, PhD, FRCOphth,^{1,2,3} Michael Crossland, PhD,^{1,2,3} Gary S. Rubin, PhD,^{1,2,3} Baljean Dhillon, FRCS,⁵ David H.W. Steel, FRCOphth,^{7,9} Eddy Anglade, MD,¹⁰ Robert P. Lanza, PhD,¹⁰ Robin R. Ali, PhD, ^{1,3,11} Michel Michaelides, MD, FRCOphth, ^{1,2,3} James W.B. Bainbridge, PhD, FRCOphth^{1,2,3}

Participants :

- 12 STGD1 (34-53 years)
- **IP** : hES-RPE suspension
- 3 eyes in each dose of 5x10⁴, 10x10⁴, 15x10⁴, 20x10⁴ cells + Systemic immunosuppression for 13 weeks
- Follow up: 12 months

Outcome

BCVA : borderline improvement in 4 eyes, unsustained or similar improvement in fellow eyes Microperimetry; borderline improve in 1 eye at 3 mo only, others not significant Static perimetry; deterioration in 2 patients both eyes, not significant NEI VFQ-25; no significant change Color vision (n=4); no significant change Subretinal pigmentation in all eyes area α dose (R²=0.981)

Ophthalmology Volume 125, Number 11, November 2018

Identification of Transplanted hES-RPE in Human

: Following reports from the clinical trials in Bundang CHAMC

Sung Han Shim, PhD¹; Gwangil Kim, MD, PhD²; Dong Ryul Lee, PhD³; <u>et al</u>

A Fundus photograph and optical coherence tomography before removal of ERM

B Fundus photograph and optical coherence tomography 7 mo after removal of ERM

A Hematoxylin-eosin ×100	B Hematoxylin-eosin ×400	C Chromosome fluorescence in situ hybridization
	(EST)	the the
D DAPI	E MITF	F DIC
	les d	Bastro .
G DAPI+MITF	H DAPI+MITF+DIC	I DAPI
	Born.	1.19
J Bestrophin	K DIC	L DAPI+bestrophin
A Contraction	_	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
M DAPI+bestrophin+DIC		
and the second		

JAMA Ophthalmology 135.3 (2017): 287-289.

Long-term safety and tolerability of subretinal transplantation of hES-RPE in Asian SMD patients

: Following reports from the clinical trials in Bundang CHAMC

Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients

Youngje Sung ⁽⁶⁾, ¹ Min Ji Lee, ² Jinjung Choi, ³ Sang Yoon Jung, ³ So Young Chong, ⁴ Jung Hoon Sung, ⁵ Sung Han Shim, ⁶ Won Kyung Song¹

Br J Ophthalmol 2020;0:1-9. doi:10.1136/bjophthalmol-2020-316225

Participants:

- total of 3 (age range: 40-45)

<u>IP</u>:

- hES-RPE suspension 5x10⁴ cells

Route:

- subretinal transplantation after vitrectomy

Follow up:

- 36 months

Outcome:

- Primary : safety & tolerability: Physical, laboratory examinations
- Ophthalmic examinations: NEI VFQ-25, visual acuity, visual field, fundus photography, fluorescein angiography, optical coherence tomography, autofluorescence

PloS one 9.8 (2014): e104145. *Retina 39 (2019): S174-S176.* <u>https://retinaspecialists.com.au/vitrectomy-surgery/</u>

80.00

70.00

60.00

50.00

Overall score

30.00

20.00

10.00

0.00 +

Long-term safety and tolerability of subretinal transplantation of hES-RPE in Asian SMD patients

Outcome:

- No severe systemic AEs
- No severe AEs related to immunosuppression
- No severe ophthalmic AEs related to hES-RPE
- No abnormal proliferation and rejection

Functional:

- BCVA : +9 (FE +7), +17 (FE +2), +5 (FE +5)
- NEI VFQ-25 : consistent with BCVA in Pt.2.
- Visual Field
- Electroretinogram

Long-term safety and tolerability of subretinal transplantation of hES-RPE in Asian SMD patients

Anatomical:

- Subretinal pigmentation (1 eye)
- Epiretinal membrane with preretinal pigmentation (1 eye)

Significant adverse events:

- Rhegmatogenous retinal detachment (1 eye)
- Epiretinal membrane with pigmentation (1 eye)

Genetic Research of Korean Patients with Stargardt Disease

Research Article

Ophthalmologica

Ophthalmologica DOI: 10.1159/000490073

Received: February 14, 2018 Accepted after revision: May 9, 2018 Published online: July 4, 2018

Clinical and Genetic Characteristics Analysis of Korean Patients with Stargardt Disease Using Targeted Exome Sequencing

Youngje Sung^a Seung Woo Choi^c Sung Han Shim^b Won Kyung Song^a

한국인 최초 스타가르트 유전-표현형 분석 연구 ABCA4 mutations were confirmed in 17 of 24 patients, and **12 novel mutations were identified**

Table 2. List of mutations identified from exome sequencing of the ABCA4 gene

Patient No.	Gene	Exon	cDNA sequence change	Amino acid change	Domain	Note	Mutation type	PolyPhen2 prediction	MutationTaster prediction
P001	ABCA4 ABCA4 ABCA4	8 13 21	c.983A>T c.1933G>A c.3106G>A	p.Glu328Val p.Asp645Asn p.Glu1036Lys	extracellular loop extracellular loop ATP-binding domain	reported reported reported	-		
P002	ABCA4 ABCA4	19 35	c.2894A>G c.4972A>C	p.Asn965Ser p.Ser1658Arg	extracellular loop –	reported novel	– missense	– possibly damaging	– DC
P003	ABCA4 ABCA4	20 13	c.3035_3037delACA c.1804C>T	p.Asn1012del p.Arg602Trp	ATP-binding domain extracellular loop	novel reported	deletion -	-	DC -
P004	ABCA4	19	c.2974A>C	p.Thr972Pro	ATP-binding domain	novel	missense	probably	DC
	ABCA4	43	c.5929G>A	p.Gly1977Ser	_				
P011	ABCA4 ABCA4 ABCA4	10 40 45	c.1268A>G c.5656G>A c.6146_6146delA	p.His423Arg p.Gly1886Arg p.Lys2049Arg	extracellular loop transmembrane domain ATP-binding domain	reported reported novel	- - deletion	– – benign	- - DC
P012	ABCA4 ABCA4	10 10	c.1268A>G c.1309C>A	p.His423Arg p.Gln437Lys	extracellular loop extracellular loop	reported novel	– missense	_ benign	_ DC
P013	ABCA4 ABCA4	6 12	c.635G>A c.1699G>A	p.Arg212His p.Val567Met	extracellular loop extracellular loop	reported reported	-	-	-
P015	ABCA4 ABCA4	6 49	c.635G>A c.6764G>T	p.Arg212His p.Ser2255Ile	extracellular loop -	reported reported	-	-	-
P016	ABCA4 ABCA4 ABCA4	5 6 10	c.560G>A c.635G>A c.1268A>G	p.Arg187His p.Arg212His p.His423Arg	extracellular loop extracellular loop extracellular loop	novel reported reported	missense - -	benign - -	DC
P017	ABCA4 ABCA4 ABCA4	8 10 33	c.880C>T c.1294G>A c.4685T>A	p.Gln294* p.Glu432Lys p.Ile1562Thr	extracellular loop extracellular loop extracellular loop	novel reported reported	stop-gain - -		DC - -
P018	ABCA4 ABCA4 ABCA4	10 20 47	c.1268A>G c.3035_3037delACA c.6389T>A	p.His423Arg p.Asn1012Ile p.Met2130Lys	extracellular loop ATP-binding domain –	reported novel novel	- deletion missense	– probably damaging	DC DC
P020	ABCA4 ABCA4	8 23	c.880C>T c.3398T>C	p.Gln294* p.Ile1133Thr	extracellular loop extracellular loop	novel novel	stop-gain missense	– benign	DC DC
P021	ABCA4 ABCA4	14 40	c.1958G>A c.5656G>A	p.Arg653His p.Gly1886Arg	transmembrane domain transmembrane domain	reported reported	-	-	-
P022	ABCA4 ABCA4	13 44	c.1933G>A c.6146-6146delA	p.Asp645Asn p.Lys2049Arg	extracellular loop ATP-binding domain	reported novel	- deletion	_ benign	_ DC
P023	ABCA4 ABCA4 ABCA4	20 24 46	c.3035_3037delACA c.3547G>T c.6289C>T	p.Asn1012Ile p.Gly1183Cys p.Pro2097Ser	ATP-binding domain – ATP-binding domain	novel reported novel	deletion – missense	– – probably damaging	DC - DC
P024	ABCA4 ABCA4	10 33	c.1268A>G c.4748T>C	p.His423Arg p.Leu1583Pro	extracellular loop extracellular loop	reported reported	-	_	-
P026	ABCA4	16	c.2384G>A	p.Ser795Asn	transmembrane domain	novel	missense	possibly	DC
	ABCA4	23(?)	c.3470T>G	p.Leu1157*	-	novel	stop-gain	–	DC

DC, disease causing.

Ophthalmologica 241.1 (2019): 38-48.

Patents

Semiautomated Subretinal Fluid Injection Method Using Viscous Fluid Injection Mode

HEE J. KWON, MD, OH W. KWON, MD, PHD, WON K. SONG, MD, PHD *Retina.* 2019 Oct;39 Suppl 1:S174-S176.

Patents

6	(19) 대	한민국특허청(KR)	(45)	공고일자 드루비호	2019년06월20일	1	
	(12) 둥	록특허공보(B1)	(24)	등록인오 등록일자	10-1957552 2019년03월06일	1	
(51) 국제 ^목 <i>A61L</i> (52) CPC특 <i>A61L</i>	특허분류(Int. 27/56 (2006) 허분류 27/56 (2013)	Cl.) .01) A61L 27/54 (2006.01)	(73)	특허권자 재단법인대구 대구 달성군 바모기	·경북과학기술원 현풍면 테크노중	앙대로 333,	
A61L (21) 출원 (22) 출원 (22) 출원 (44) 조개 (43) 공개 (56) 서해2	27/54 (2013) 선호 10 일자 20 정구일자 20 번호 10 일자 20 일자 20	9.1/)-2017-0040897)17년03월30일)17년03월30일)-2018-0112154)18년10월12일	(72)	발명자 박석호 광주광역시 (일곡동,동ං 송원경 서울특별시 구정동,구현	북구 우치로537번 나아파트) 강남구 압구정로 : 대아파트) 5)	길 10 101통 201 80동 20	- 1002호 03호 (압
(30) 신망/ DIONI Med.(<i>(뒷면</i> 전체 청구혁	GI, C. et al 2014) Vol.25 <i>에 계속)</i> 당 수 : 총 4	., J. Mater, Sci.: Mater. 5, pp.2365-2371* : 광	(74)	대리인 특허법인 아	이퍼스	심사관 :	정재철
(54) 발명의	의 명칭 형상법	변형이 가능한 스캐폴드					

(57) 요 약

본 발명은 스캐플드에 관한 것으로, 보다 상세하게는 형상변형이 가능한 스캐플드, 그 제조방법 및 변형복원 방 법에 관한 것이다. 이를 위해, 제1 형태를 갖는 스캐플드(100); 스캐플드(100)에 답지되어 제1형태와 다른 제2 형태로 스캐플드(100)를 변형시키는 변형수단; 스캐플드(100)에 담지되어 외부의 자락에 반응하는 자성체(20); 및 스캐플드(100)에 담지되는 세포 또는 약물;을 포함하는 것을 특징으로 하는 형상변형이 가능한 스캐플드가 제 공된다.

대 표 도 - 도9b

Bilayer Hydrogel Sheet-Type Intraocular Microrobot for Drug Delivery and Magnetic Nanoparticles Retrieval

Dong-In Kim, Hyoryong Lee, Su-Hyun Kwon, Young Je Sung, Won Kyung Song, and Sukho Park*

망막 하 약물(세포)주입 전달성을 높이기 위한 형상변형 가능한 스캐폴드

Recent updates

• 한국인 유전성망막질환의 돌연변이 영향지도 구축 연구

- 질병관리본부 과제 (2018ER690203)
- 신촌/강남 세브란스병원 안과, 서울아산병원 안과, 분당차병원 안과, 아주대병원 안과 공동연구
- Establishment of the IRD database with EAIRDs (East Asia Inherited Retinal Disease Society)
- Expansion to the gene therapy for IRD
- Developing a novel outcome variable (reading speed chart in Korean)

MNREAD" ACUITY CHART 2			A. 24 basic Korean comp	onents	C. 5 types of testing stimuli			
M sizo 4.0	그녀는 생일 때 받은 장난감들을 우리에게 보여 줄 것을 원했다	Broßen togMAR br 40xx//8 nummer 20/200 1.0	Consonants: フ ∟ ⊏ व	ロ ㅂ ㅅ ㅇ ㅈ ㅊ ヲ ㅌ ㅍ ㅎ	र्ड डा जा	Trigrams		
3.2	아들이 학교 가는 걸 엄마가 원했단 걸 그 아들에게 전달하였다	20/160 0.9	Vowels: }	4 ㅗ ㅛ ㅜ ㅠ ㅡ ㅣ	<u>ت</u> 3.8° X	lzb		
2.5	한 노인은 된 누이와 작은 강아지 한 마리 그럼 한 개를 그렸다	20/125 0.8	B. Structure of Korean ch	aracters		→ 5.14° ←		
2.0	그 도로 절에서 세트 다른 절 종류의 꽃이 함께 잘 자라고 있다	20/100 0.7	b. Structure of Rolean en	aracters				
1.6	루 네가 내일 도움을 좋 수 있다면 우리네 내 이름을 위서 물제	20/80 0.6			E Single	Trigrams		
1.3	아버는 것은 지수 가 아이들에게 개설하는 같 가장은 아이 것이	20/63 0.6	$O \Gamma = O + \Gamma$		e components			
1.0		20/50 0.4			Š.	거누비		
0.8		20/40 0.3			Single 7			
0.6	LINE	20/32 0.2	— —	Α	single 📈			
0.6 0.4		20/25 0.1	.1 - 7 + 1		characters			
10		8010 - 61 8013 - 63 2010 - 63 2010 - 64				→ 5.14° →		
8.02	e Country 1986, Reprint of the L	DON - 5.8			-			
A standard and a		The second s						
					lournal of Vicion (20	10 10/1).5 1 15		
					JUUITIAL UL VISION $(20$	(10) 10(1).3, 1-13		