AI in Radiology : industry perspective

Ki Hwan Kim, MD, PhD Chief Medical Officer <u>khkim@lunit.io</u> 2021-04-16

Lunit

AI applications across the human lifespan

Saving lives through AI

Technically innovative

Clinically innovative

PLunit INSIGHT

Lunit INSIGHT MMG for Breast Cancer Screening

Lunit INSIGHT MMG

Step 1: Exploring Clinical Unmet Needs

- Difficult image interpretation
- Poor performance of Traditional CAD
- Market already exists

Step 2: Development of AI

- Winning strategy
 - Data number Breast cancer 40K, total 200K: AMC/SMC/YUHS/US/UK
 - Annotation by breast radiologists
 - Al performance top Al researchers

Step 2: Development of AI

Figure 1: Development dataset generation and partitioning

All mammograms are four-view paired (left and right craniocaudal and mediolateral oblique). There was no overlap between categories (cancer, benign, and normal). NHS=National Health Service.

	ROC AUC	Sensitivity	Specificity
Korea (n=1,858)	97%	90%	92%
US (n=750)	95%	94%	80%
Europe (n=654)	94%	92%	77%

Step 4: External Validation with Reader Study

THE LANCET

Digital Health

Sensitivity

False Positive Rate

THE LANCET

Digital Health

First peer-reviewed paper

Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study

Hyo-Eun Kim*, Hak Hee Kim*, Boo-Kyung Han*, Ki Hwan Kim, Kyunghwa Han, Hyeonseob Nam, Eun Hye Lee, Eun-Kyung Kim

Lancet Digital Health 2020; Published Online February 6, 2020

Figure 3: ROC analysis for AI-unaided and AI-aided diagnosis

Sensitivity and specificity of each individual (including AI standalone) are marked on each curve. AI=artificial intelligence. ROC=receiver operating characteristic.

Step 5: External Validation in Screening Cohorts

JAMA Oncology | Original Investigation

JAMA Oncology 2018 Journal Impact Factor: 22.416

External Evaluation of 3 Commercial Artificial Intelligence Algorithms for Independent Assessment of Screening Mammograms

Mattie Salim, MD; Erik Wåhlin, MSc; Karin Dembrower, MD; Edward Azavedo, MD, PhD; Theodoros Foukakis, MD, PhD; Yue Liu, MSc; Kevin Smith, MSc, PhD; Martin Eklund, MSc, PhD; Fredrik Strand, MD, PhD

Salim, et al. JAMA Oncol. 2020 Aug 27.

8 years of Breast Screening Cohort Retrospective Analysis: Comparison of Three Leading MMG AI Products Screening Performance Benchmarkers for AI Algorithms in 739 Women Who Received a Diagnosis of Breast Cancer and 112,924 Healthy Women

Benchmark	Algorithm 1	Algorithm 2	Algorithm 3
Accuracy (ROC AUC)	0.956 (0.948-0.965)	0.922 (0.910-0.934)	0.920 (0.909-0.931)
Sensitivity	81.9% (79-85%)	67.0% (64-70%)	67.4% (64-71%)
False Negative Rate	18.1% (15.4-21.1%)	33.0% (29.6-36.4%)	33.0% (29.6-36.4%)

Step 5: External Validation in Screening Cohorts

Table 2. Screening Performance Benchmarks for Artificial Intelligence Algorithms and for Radiologists in 739 Women Who Received a Diagnosis of Breast Cancer and 112 924 Healthy Women

	Benchmark point estimate (95% CI) ^a					
	Algorithm ^b			Reader		
Benchmark	1	2	3	First	Second	Consensus
Specificity, %	96.6 (96.5-96.7)	96.6 (96.5-96.7)	96.7 (96.6-96.8)	96.6 (96.5-96.7)	97.2 (97.1-97.3)	98.5 (98.4-98.6)
Sensitivity, %	81.9 (78.9-84.6)	67.0 (63.5-70.4)	67.4 (63.9-70.8)	77.4 (74.2-80.4)	80.1 (77.0-82.9)	85.0 (82.2-87.5)
Accuracy, %	96.5 (96.4-96.6)	96.4 (96.3-96.5)	96.5 (96.4-96.6)	96.5 (96.4-96.6)	97.1 (97.0-97.1)	98.4 (98.3-98.5)
PPV, %	13.6 (12.5-14.7)	11.4 (10.5-12.4)	11.8 (10.8-12.8)	13.0 (12.0-14.0)	15.9 (14.7-17.1)	27.2 (25.4-29.1)
AIR	39.1 (38.0-40.2)	38.1 (37.0-39.2)	37.3 (36.2-38.4)	38.8 (37.7-39.9)	32.8 (31.8-33.9)	20.3 (19.5-21.1)
CDR	5.32 (4.91-5.76)	4.36 (3.98-4.76)	4.38 (4.00-4.78)	5.03 (4.63-5.46)	5.21 (4.80-5.64)	5.53 (5.10-5.97)
FNR	0.181 (0.154-0.211)	0.330 (0.296-0.364)	0.330 (0.296-0.364)	0.226 (0.196-0.256)	0.177 (0.150-0.205)	0.150 (0.124-0.176)

Abbreviations: AIR, abnormal interpretation rate (per 1000 examinations); CDR, cancer detection rate (per 1000 examinations); FNR, false-negative rate (per cancer diagnosed within 12 months); PPV, positive predictive value.

^a Benchmark estimates based on stratified bootstrapping to attain a proportion

of women who received a diagnosis of breast cancer to healthy women similar to the source screening cohort (approximately 0.5%).

^b The operating point of each algorithm was set at a specificity as close as possible to that of the first reader (96.6%).

Table 3. Number of Abnormal Interpretations and Cases Positive for Cancer Detected by Algorithms and Readers Alone and by Algorithms Combined With the Assessment of the First, Second, or Both Readers

	No. (% increase vs alone)				
	Algorithm			Reader	
Assessment Lunit	1	2	3	First	Second
Abnormal interpretation ^a					
Alone	4441	4331	4236	4408	3728
With first reader	7851 (77)	7998 (85)	7847 (85)	NA	5484 (47)
With second reader	7188 (62)	7260 (68)	7139 (69)	5484 (24)	NA
With both readers	8745 (97)	8885 (105)	8762 (107)	NA	NA
Cancer detected ^b					
Alone	605	495	498	572	592
With first reader	655 (8)	620 (25)	623 (25)	NA	640 (8)
With second reader	664 (10)	638 (29)	643 (29)	640 (12)	NA
With both readers	667 (10)	653 (32)	656 (32)	NA	NA

Abbreviation: NA, not applicable.

- ^a Based on a total of 113 663 screenings. Observations of healthy women have been duplicated to attain a similar proportion as in the source screening cohort (0.5% with a diagnosis of cancer).
- ^b Actual screen-detected cancer (n = 618); actual clinically detected cancer (n = 121).

AI 와 readers 는 상호 보완적이며, 서로 다른 특징을 보는 것으로 추측할 수 있음.

10-14%

검출 향상

Step 6: AI-powered Triaging for Breast Cancer Screening

AI-powered Triaging for Breast Cancer Screening

Rule Out

used to triage women into a **no radiologist work stream** when having a score below a rule-out threshold.

Rule In

an **enhanced assessment** when having a score above a rule-in threshold (after negative double reading by radiologists)

Step 7: Prospective Study

https://clinicaltrials.gov/ct2/show/NCT04778670

Based on my experience in commercial AI-based image analysis SWs

- AI technology is a great opportunity.
- Clinical need is more important.
- A business strategy is the most important and AI is just a tool to solve that problem.

khkim@lunit.io