대사체학을 이용한 당뇨합병증 마커 발굴

Prediction of diabetes complications based on metabolomics

Choong Hwan Lee

Department of Systems Biotechnology Konkuk University, Seoul, Korea

Contents

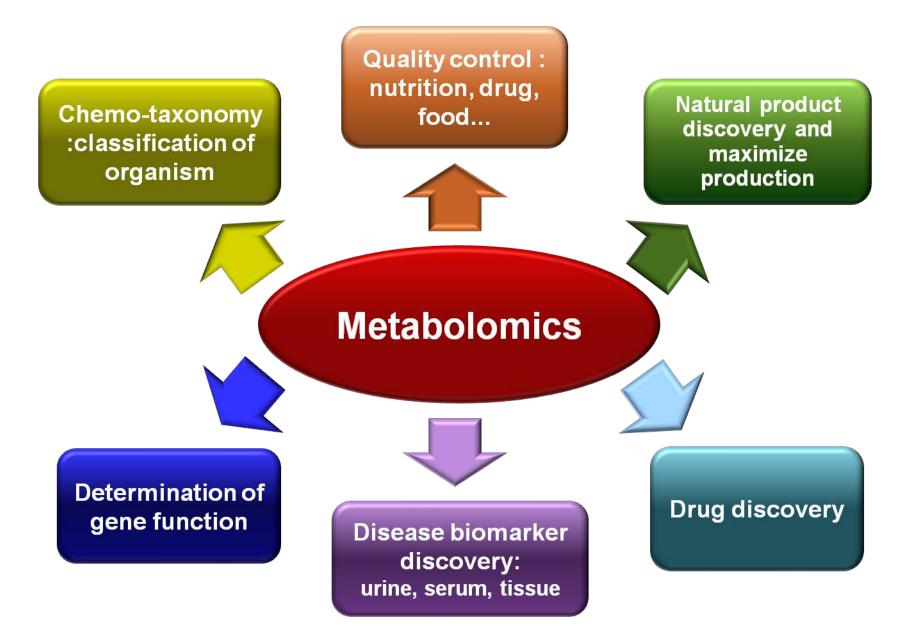
- Metabolomics: an introduction
- Plasma Metabolomics in patient with type 2 diabetes mellitus
 - diabetic retinopathy
 - diabetic macular edema
- Hepatic metabolomic and lipidomic analysis of obese Type 2 diabetes in a rat model: Drug mechanism
- Oxylipins

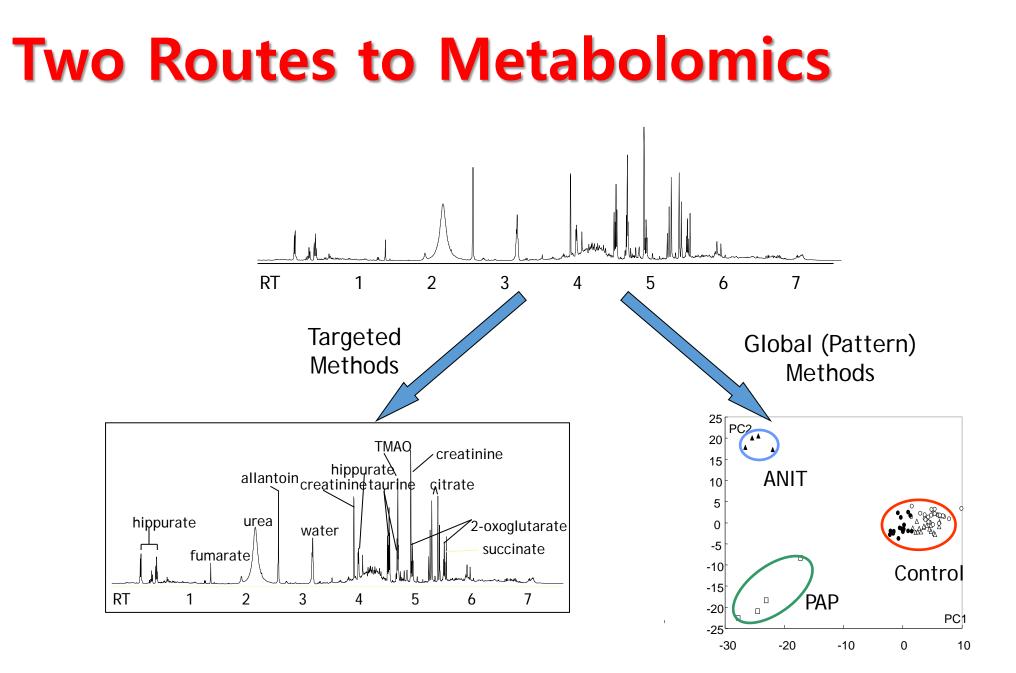
DNA?? Phenotype?? → Metabolomics

DNA? (The music of life)

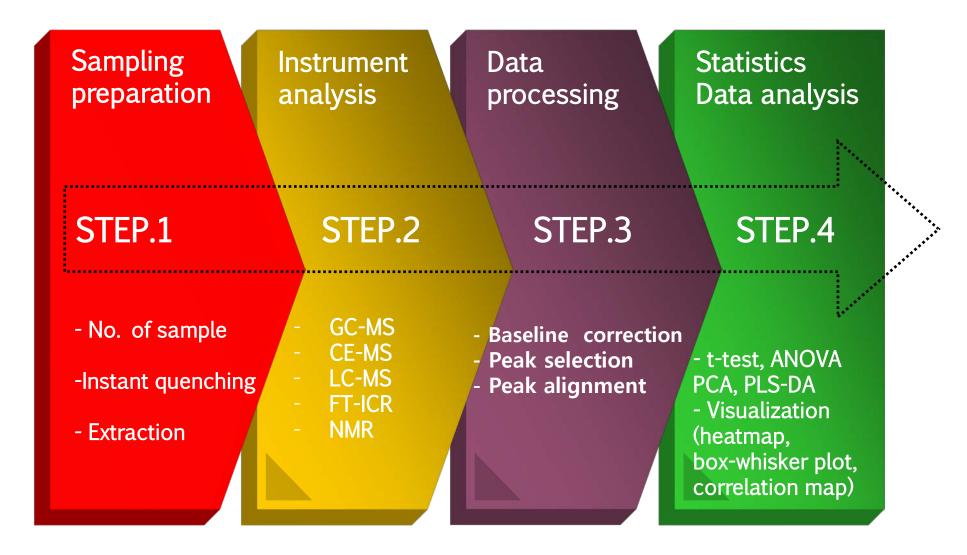
Ginseng vs Wild ginseng

Metabolomics: an introduction

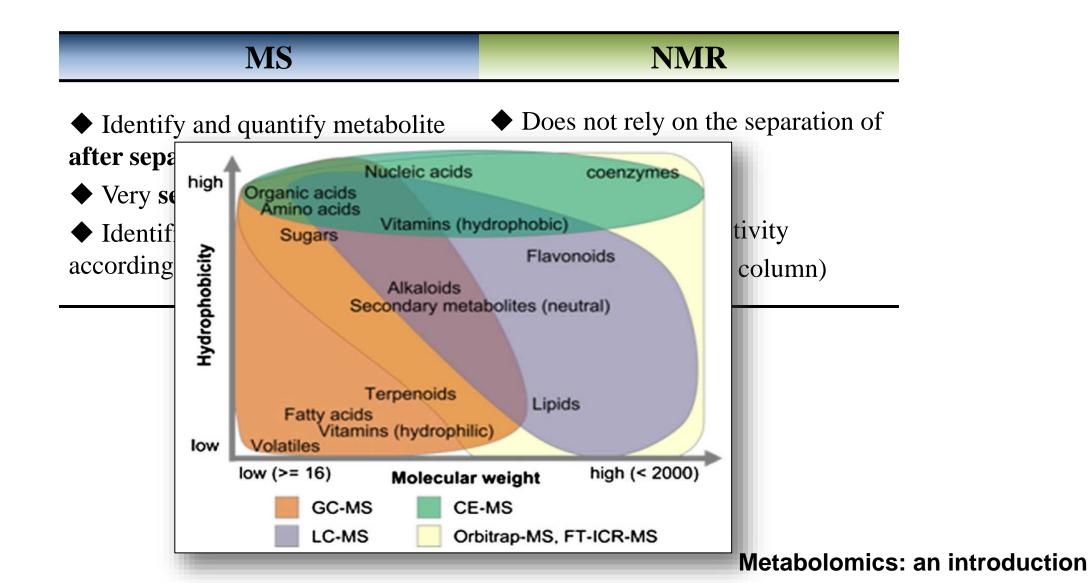

Genome, Transcriptome, Proteome, Metabolome


Genome	Transcriptome	Proteome	Metabolome
gene, chromosom e	mRNA	protein	metabolite
Genetic information	Genetic information	Protein function	Phenotype
100,000- 120,000	100,000- 120,000	5,000-20,000	100- 5,000
mapping, sequencing	sequencing	separation, characterization	separation, characterization, determination, quantitation
DNA sequencing	HT-northern analysis	Two-D-gel	IR, MS, NMR

How many Metabolites?


- M/Os: >20,000
- Plants: >200,000
- Mammals: >2,500 8,000

Application of Metabolomics


Work flow of Metabolomics

What is a Metabolite?

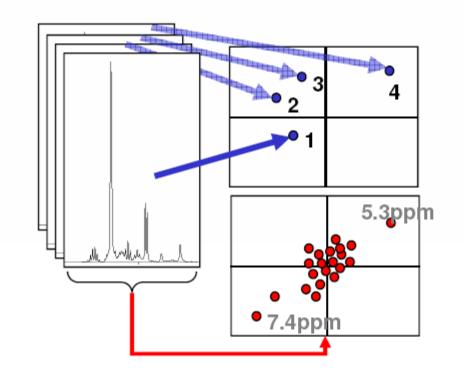
- Any organic molecule detectable in the body with a : MW < 1000 Da
- Includes peptides, oligonucleotides, sugars, nucelosides, organic acids, ketones, aldehydes, amines, amino acids, lipids, steroids, alkaloids and drugs (xenobiotics) →
 Structural diversity
- How many Metabolites?
 - M/Os: >20,000
 - Plants: >200,000
 - Mammals: >2,500 8,000 (HMDB)

Major technologies for Metabolomics

[Equipment]

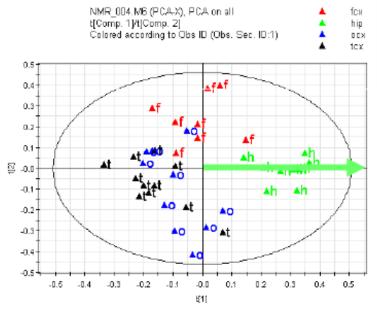
UHPLC-LTQ-Orbitrap-MS

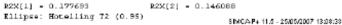
Triple-Q MS



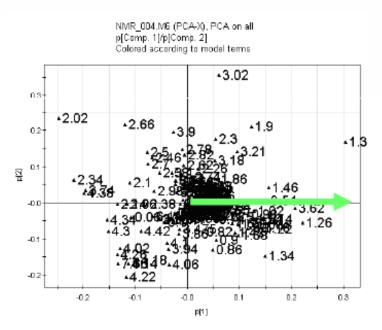
GC-TOF-MS II

Principal Component Analysis (PCA)


 Spectrum (observation) becomes a point in PCA Scores plot


 Variables (ppm or m/z) shown in PCA Loadings Plot

 Using plots together allows trends in the sample spectra to be *interpreted* in terms of chemical shift


Principal Component Analysis (PCA)

- Scores
 - Observations (spectra)
 - Trends, patterns, groups

- Loadings
 - Variables (ppm)
 - Correlation, influence

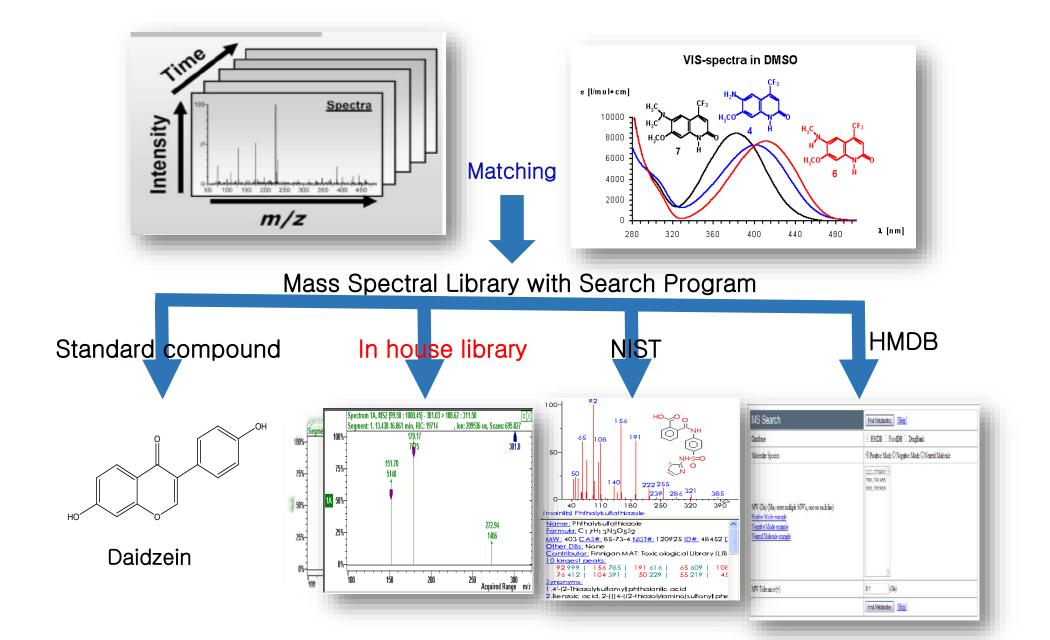
B2X(11) = 0.177693 B2X(2) = 0.146080 SMCAP+115-050500071308:58

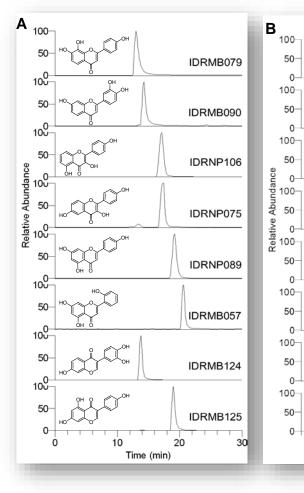
MS/MS Databases

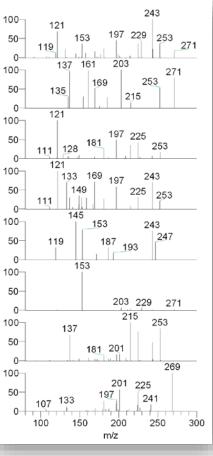
 Large amount of data: MS, MS/MS, HRMS, isotope ratio

Need for databases that can be easily searched

In-house MS-DB




Metabolomics: an introduction



Identification of metabolites

In House LC/MS/MS DB for 2nd metabolites Contains 6,500 spectra of metabolites

RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2005; 19: 3539–3548 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcm.2230

Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library

Table 1. Subclasses of flavonoids

Class	Flavonoids
Flavonols	Quercetin, kaempferol, myricetin, isorhamnetin
Flavones	Luteolin, apigenin
Flavanones	Hesperetin, naringenin, eriodictyol,
	pentahydroxylflavanone
Flavans	Catechin, gallocatechin, epicatechin,
	epigallocatechin, dihydrokaempferol,
	dihydroquercetin, dihydromyricetin
Isoflavones	Daidzein, genistein, glycitein
Anthocyanidins	Cyanidin, delphinidin, malvidin, pelargonidin
Chalcones	Chalcone, tetrahydroxychalcone

Ę

Contents

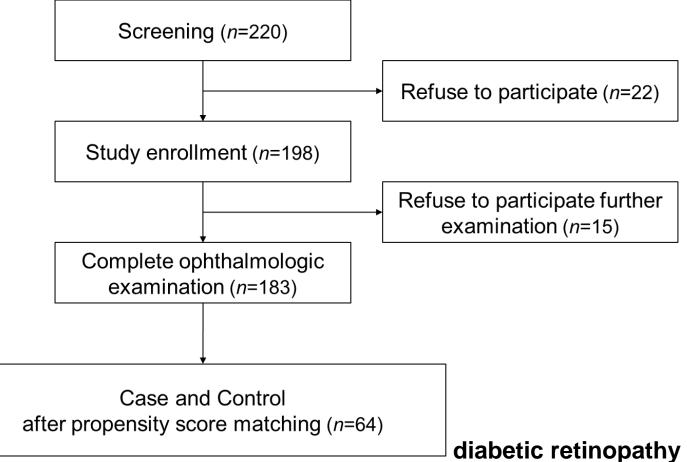
• Metabolomics: an introduction

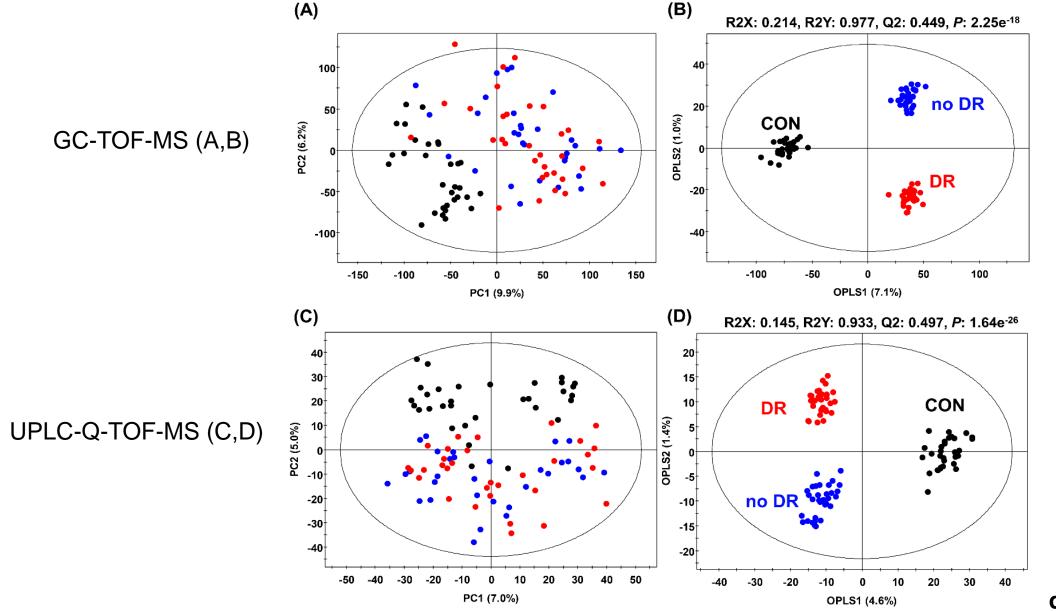
• Plasma Metabolomics in patient with type 2 diabetes mellitus

- Glutamine, glutamic acid, and its ratio can be new biomarkers to predict the prognosis of **diabetic retinopathy**
- Plasma amino acids and oxylipins as potential multi-biomarkers for predicting diabetic macular edema
- Drug mechanism: Hepatic metabolomic and lipidomic analysis of obese Type 2 diabetes in a rat model
- Oxylipins

Metabolome-Microbiome analysis reveals green tea alleviates UVB-damaged mouse skin

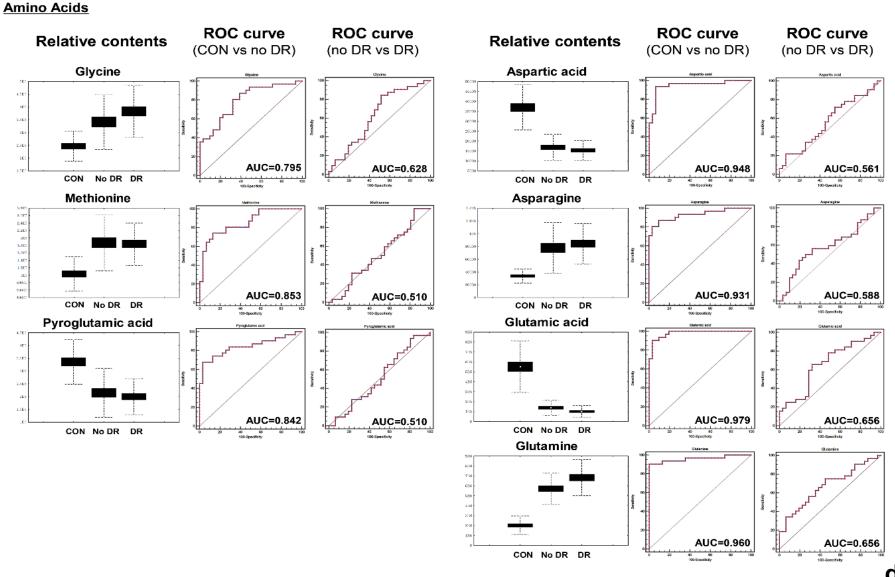
Metabolomics (2018) 14:89 https://doi.org/10.1007/s11306-018-1383-3


ORIGINAL ARTICLE


Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy

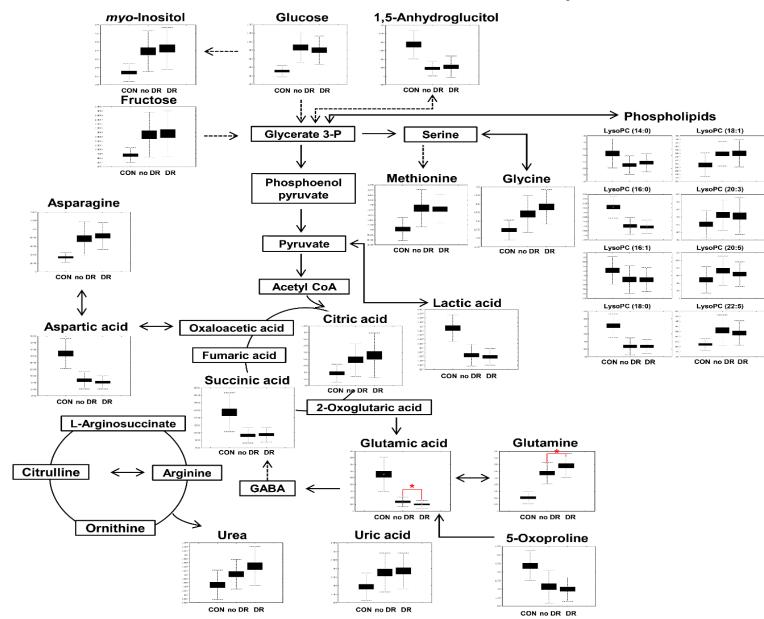
Sang Youl Rhee¹ · Eun Sung Jung² · Hye Min Park² · Su Jin Jeong³ · Kiyoung Kim⁴ · Suk Chon¹ · Seung-Young Yu⁴ · Jeong-Taek Woo¹ · Choong Hwan Lee²

Study Progression



Principal component analysis (PCA) (A,C) and orthogonal partial least squares discriminant analysis (OPLS-DA) (B,D) score plots for plasma of non-diabetic control, no DR, and DR subjects analyzed by GC-TOF-MS (A,B), and UPLC-Q-TOF-MS (C,D).

diabetic retinopathy

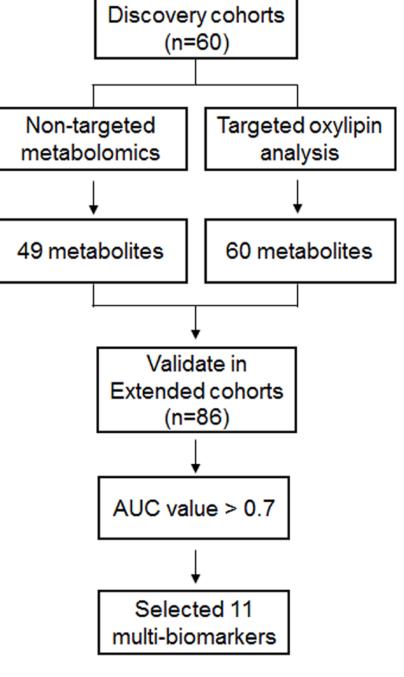

Box and whisker plots and ROC curves of amino acids in plasma which significantly distinguish non-diabetic control, no DR, and DR subjects. The AUC values of each metabolites are shown in inside of ROC curve.

diabetic retinopathy

A schematic diagram of a proposed metabolic pathway using metabolites shows significantly different levels among experimental groups including non-diabetic control, no DR, and DR subjects.

Ē

diabetic retinopathy


Summary of diabetic retinopathy

- Glutamine and glutamic acid were identified as the most accurate marker for the presence of DR in subjects. ROC analysis showed high diagnostic value of glutamine (AUC=0.671), glutamic acid (AUC=0.656) and its ratio (AUC=0.742) for DR.
- Our study suggests that **glutamine**, **glutamic acid**, **and its ratio** can be useful as new biomarkers to predict the prognosis of DR in elderly T2DM patients.

Plasma amino acids and oxylipins as potential multi-biomarkers for predicting diabetic macular edema

Sang Youl Rhee^{1*}, Eun Sung Jung^{2*}, Su Jin Jeong³, Kiyoung Kim⁴, Suk Chon¹, Seung-Young Yu⁴, Jeong-Taek Woo^{1**}, Choong Hwan Lee^{2,5,6**}

Scientific Report in press

Principal component analysis (PCA) (A) and partial least squares discriminant analysis (PLS-DA) (B) score plots for candidate plasma markers in diabetic macular edema (DME) and non-DME subjects analyzed by GC-TOF-MS.
—non-DME group,
—DME group

Ē

(A)

١							(E
,		1.0 1.5		0.5	1.0		
	non Di	IE DME		non DM	EI	DME	AA 11575
			Cysteine				20-HETE
		*	Glutamic acid			*	15-keto Prostaglandin F2α 15-keto Prostaglandin E2
		*	Cystine			_	Thromboxane B2
		*	Asparagine		-	_	13,14-dihydro-15keto Prostaglandin D2
		*	Aspartic acid				5(S)-HpETE
		*	Threonine			_	(±)11-HETE
			Ornithine				(±)8(9)-EET
			5-Oxoproline				(±)12-HETE
			Arginine				(±)5-HETE or (±)8-HETE
		*	Serine				(±)12-HpETE
		*	Lysine				Leukotriene C4
			Glutamine				Prostaglandin A2
			Methionine		+		Prostaglandin D2
			Glycine		+		Prostaglandin J2
			Tyrosine		+	_	5-OxoETE
			Phenylalanine		+	_	(±)11(12)-DiHET or (±)14(15)-DiHET
			Alanine	<u> </u>	+	_	(±)5(6)-EET Leukotriene A4 methyl ester
			Proline		+	_	Leukotriene D4
			Tryptophan		-	_	Leukotriene B4
		*	Aminomalonic acid		+	_	(±)15-HETE
		*	Uric acid			*	15-OxoETE
		*	Citric acid				(±)9-HETE
		*	Malic acid				Prostaglandin B2
			Glyceric acid				Prostaglandin E2 or Prostaglandin H2
			Galacturonic acid				(±)11(12)-EET or (±)14(15)-EET
			Pyruvic acid				20-hydroxy Leukotriene B4
			Glycolic acid			*	12-OxoETE
			Phosphoric acid Lactic acid			_	11-dehydro Thromboxane B2
		*	Hydroxylamine	_	-	_	13,14-dihydro-15-keto Prostaglandin F2α Lipoxin B4
			Urea		-	*	20-carboxy Leukotriene B4
			Creatinine		-	<u> </u>	Prostaglandin F2a
		*	Phenylacetic acid				6-keto Prostaglandin F1α
		^	Docosahexaenoic acid				15(S)-HpETE
			3-Hydroxyisovalericacid				(±)4-HDHA
		-	Oleamide				(±)20-HDHA
			Monoelein				(±)7-HDHA
			Monopalmitin				(±)8-HDHA
		*	Nonanoic acid				(±)17-HDHA
		-	Decanoic acid				(±)16-HDHA
			Arachidonic acid		_		10(S),17(S)-DiHDHA
			myo-Inositol		-	_	(±)10-HDHA
			Glycerol		-	_	(±)13-HDHA
			Fructose		+	_	(±)15-HEPE (±)11(12)-EpETE
			Glucose		+		(±)12-HEPE
			Glucose		+	_	Prostaglandin D3
			1,5-Anhydroglucitol		+	_	(±)18-HEPE
			Maltose				Prostaglandin E3
			Sucrose			*	9-OxoODE
							13-OxoODE
							(±)12(13)-DiHOME
							(±)9(10)-EpHOME
							(±)9(10)-DIOME
					-	*	(±)9-HODE or (±)13-HODE
					-		9(S)-HoTrE

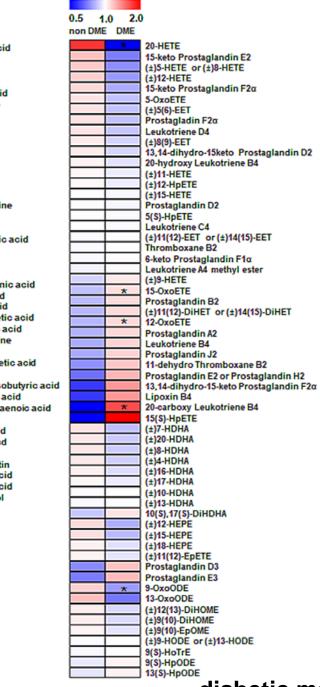
13(S)-HpODE

9(S)-HpODE

(P)			
(•)	0.5 1	1.0 1.5	5
	non DM	E DME	
		*	Glutamic acid
		*	Cystine
			Alanine
n D2			Cysteine
		*	Aspartic acid
		*	Asparagine
		*	Glutamine
		*	Lysine
			Methionine
			Threonine
			Serine
			Tyrosine
			Ornithine
			Valine
			Phenylalanine
			Isoleucine
			Proline
			Galacturonic acid
		*	Uric acid
		*	Malic acid
		*	Citric acid
			Aminomalonic acid
			Pyruvic acid
H2			Glyceric acid
			Hydroxyacetic acid
			Phosphoric acid
			Hydoxylamine
			Urea
n F2a		*	Benzeneacetic acid
		*	Creatinine
			3-Hydroxyisobutyric aci
			Palmitoleic acid
		*	Docosahexaenoic acid
			Oleoic acid
			Linoleic acid
			Palmitic aicd
			Oleamide
			Monopalmitin

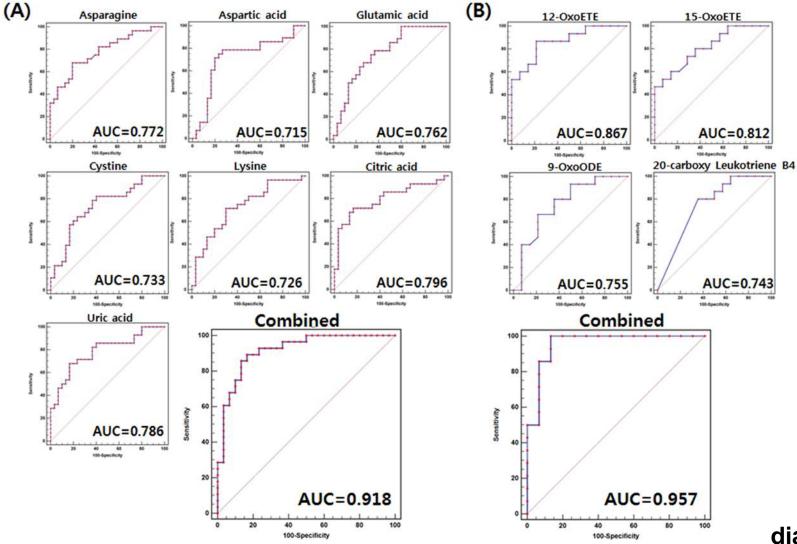
Decanoic acid

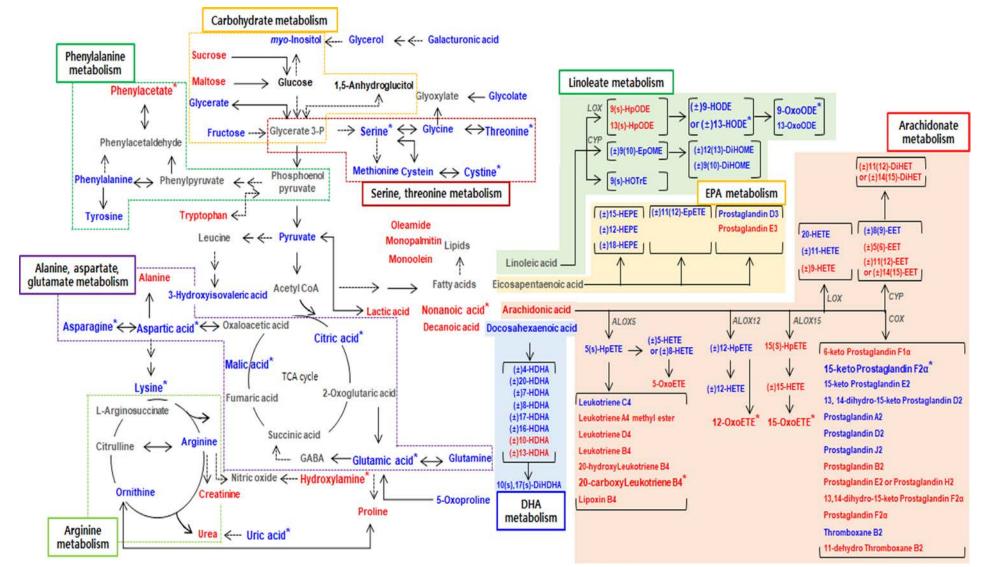
Nonanoic acid


myo-Inositol

Glycerol

Maltose


Sucrose


*

Receiver operating characteristic (ROC) curve of potential metabolite biomarkers distinguishing diabetic macular edema (DME) versus non-DME subjects, and combined ROC curves of those multi-biomarkers.

Ē

Schematic diagram of a proposed metabolic pathway using plasma metabolites derived from metabolite and lipid profiling of experimental groups including diabetic macular edema (DME) and non-DME subjects. Metabolites labelled with *blue characters* indicate that relative metabolite levels were lower in DME cases than in non-DME subjects. Metabolites labelled with <u>red characters</u> indicate that relative metabolite levels were higher in DME cases than in non-DME subjects. Metabolites labelled with <u>red characters</u> indicate that relative metabolite levels were higher in DME cases than in non-DME subjects. Metabolites labelled with <u>red characters</u> indicate that relative metabolite levels were higher in DME cases than in non-DME patients. Asterisks indicate statistically significant differences in levels of metabolites distinguishing DME and non-DME individuals (p < 0.05). The metabolic pathway was modified from the reported Kyoto Encyclopedia of Genes and Genomes pathway (KEGG, <u>http://www.genome.jp/kegg/</u>).

Summary of diabetic macular edema

From metabolomic studies of plasma, 5 amino acids (asparagine, aspartic acid, glutamic acid, cysteine, and lysine), 2 organic compounds (citric acid and uric acid) and 4 oxylipins (12-oxoETE, 15-oxoETE, 9-oxoODE, 20-carboxy leukotriene B4) were identified as candidate multi-biomarkers which can guide DME diagnosis among non-DME subjects.

 Our study suggests that multi-biomarkers may be useful for predicting DME in elderly T2DM patients

Contents

- Metabolomics: an introduction
- Diabetes complications: Plasma Metabolomics in patient with type 2 diabetes mellitus
- Hepatic metabolomic and lipidomic analysis of obese Type 2 diabetes in a rat model: Drug mechanism
 - The effect of pioglitazone on hepatic steatosis
 - Oxylipins

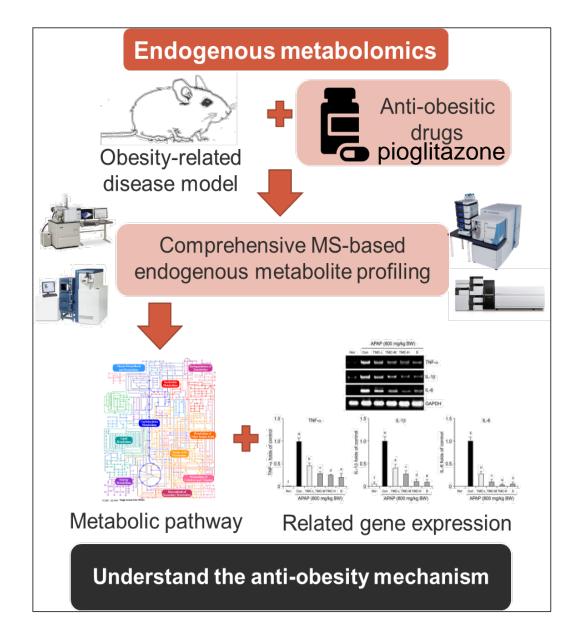
Metabolome-Microbiome analysis reveals green tea alleviates UVB-damaged mouse skin

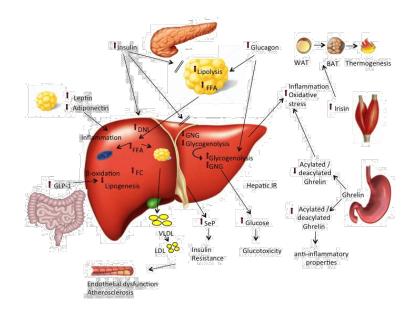
RESEARCH PAPER

Metabolomic and lipidomic analysis of the effect of pioglitazone on hepatic steatosis in a rat model of obese Type 2 diabetes

Correspondence Dr Choong Hwan Lee, Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea, and Dr Cheol-Young Park, Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, South Korea. E-mail: chlee123@konkuk.ac.kr; cydoctor@chol.com

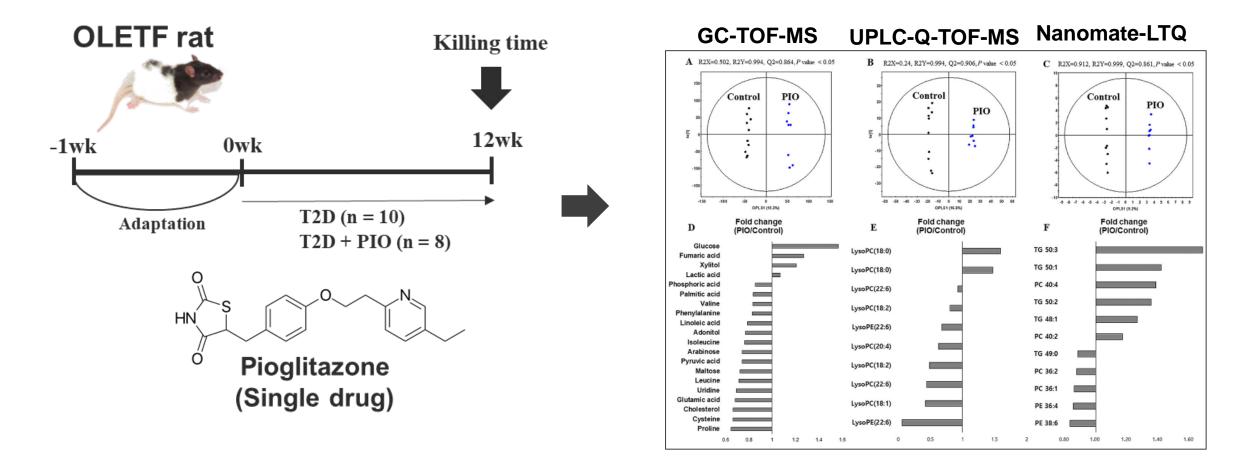
Received 28 May 2018; Accepted 8 June 2018

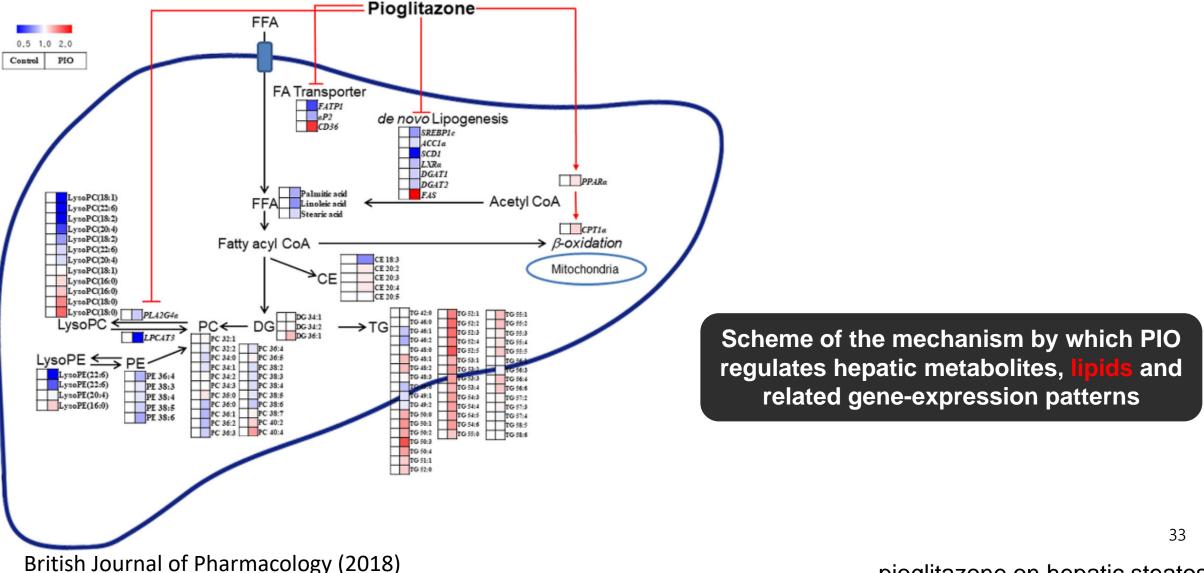

Hyekyung Yang^{1,*}, Dong Ho Suh^{3,*}, Dae Hee Kim¹, Eun Sung Jung³, Kwang-Hyeon Liu⁴, Choong Hwan Lee³ and Cheol-Young Park^{1,2}


Research design

- Male OLETF rats were orally administered pioglitazone (30-mg-kg1) and fed a high-fat diet (60% kcal fat) for 12 weeks.

- Hepatic metabolites were analysed via metabolomic and lipidomic analyses.
- Gene expression and PLA2 activity were analysed in livers from pioglitazone-treated and control rats.


Endogenous metabolomics in animal model

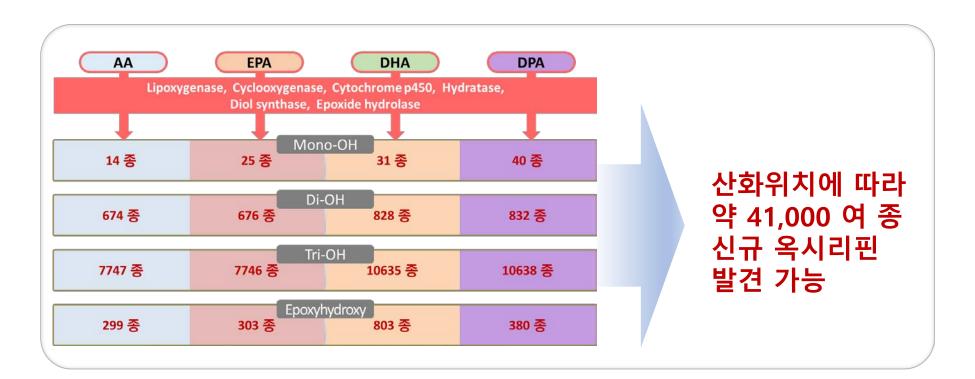


Anti-obesity effects of single drug (Pioglitazone)

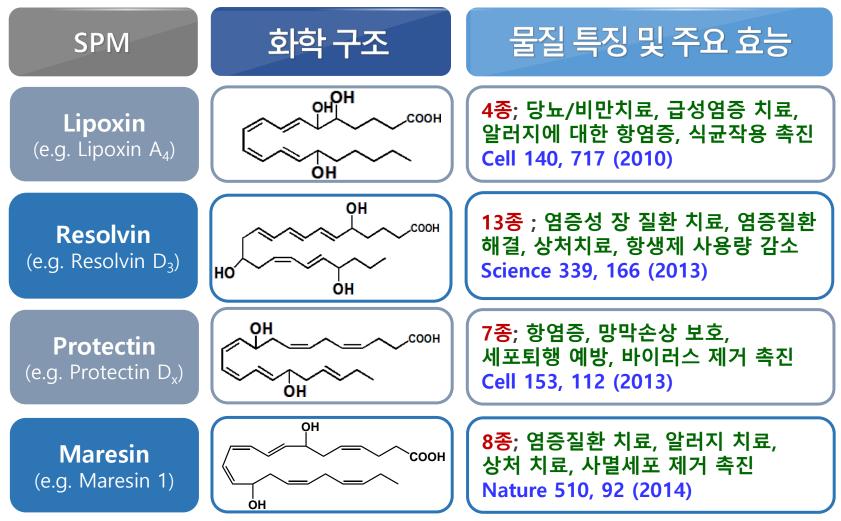
Comprehensive metabolite profiling

Anti-obesity effects of single drug (Pioglitazone) <u>Metabolic pathway (hepatic metabolites + gene expression)</u>

Summary of pioglitazone on hepatic steatosis


- Pioglitazone treatment significantly altered levels of hepatic metabolites, including free fatty acids, lysophosphatidylcholines and phosphatidylcholines, in the liver.
- reduced the expression of genes involved in hepatic *de novo* lipogenesis and fatty acid uptake and transport, whereas genes related to fatty acid oxidation were upregulated.
- Gene expression and enzyme activity of PLA2, which hydrolyzes phosphatidylcholines to release lysophosphatidylcholines and free fatty acids, were significantly decreased.

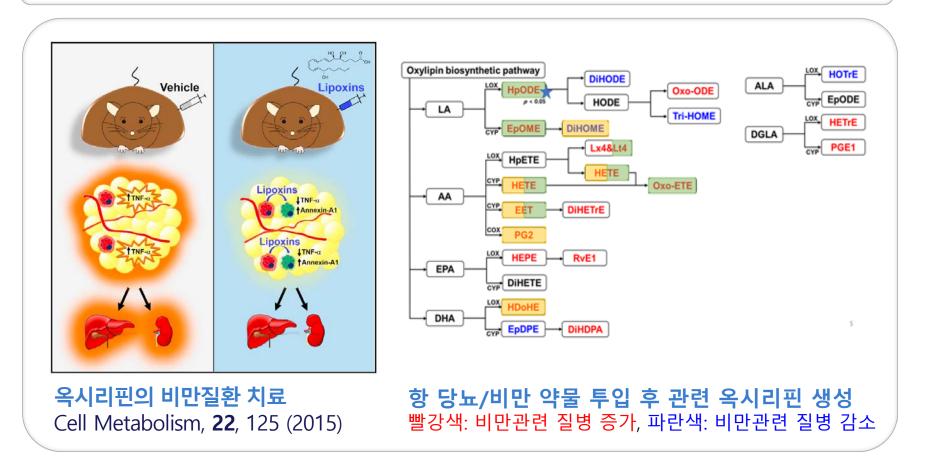
Suh and Lee, British Journal of Pharmacology (2018)


Oxylipins: 인체 내의 옥시리핀(산화지방산)이란?

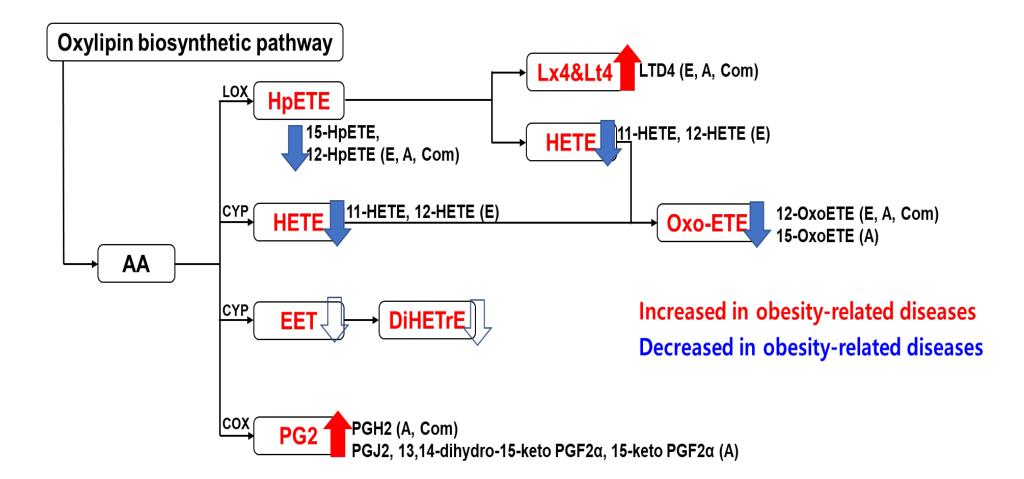
인체 내 옥시리핀 (mono-, di-, tri-hydroxy fatty acids, epoxyhydroxy fatty acids):
 약 110여종; 염증해소, 통증완화, 조직 재생, 신호전달, 항상성 유지 등에 관여

 인체 내 옥시리핀은 Arachidonic acid (AA), EPA, DHA, DPA로부터 지방산화 효소 (위치특이적 5*S*,8*S*,8*R*-,11*S*,12*S*,15*S*-lipoxygenases, cyclooxyganse, cytochrome p450, hydratase, diol synthase 등)의 조합반응으로 생성

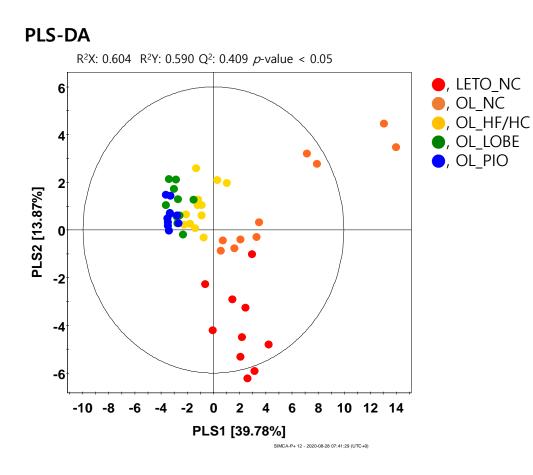
Oxylipins: 염증해소 특화지방산(SPM)의 정의 및 효능



Nature **447**, 869-874, 2007; Nature **484**, 524-528, 2012; Nature **490**, 107-111, 2012; Science **339**, 166-172, 2013; Cell **153**, 112-125, 2013, Nature, **510**, 92-101, 2014


oxylipins

Oxylipins: 옥시리핀의 비만과의 연관성


옥시리핀은 지방조직 염증/비만 유도 질병 치료에 관여함.
인체 내 염증/비만 치료제를 투여하면 치료 과정 중 다양한 옥시리핀이 발생됨.
인체 내 염증/비만 치료에 관여하는 옥시리핀의 동정이 필요함.

oxylipins

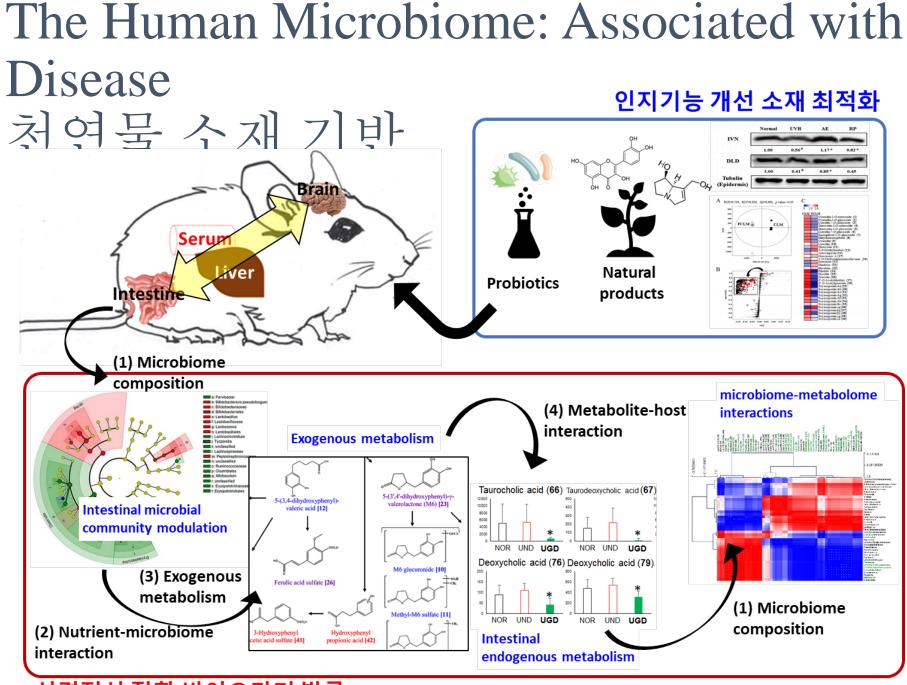
Oxylipins: Targeted metabolomic analysis in Liver

LE_NC	OL_NC	OL_HF/HC	OL_LOBE	OL_PIO	Oxylipins & Fatty acids
1.00	0.36	0.28	0.18	0.22	
1.00	0.49	0.48	0.39	0.37	
1.00	0.50	0.49	0.27	0.29	
1.00	0.54	0.33	0.22	0.29	
1.00	0.94	0.38	0.36	0.48	
1.00	0.42	0.44	0.43	0.77	
1.00	0.77	0.55	0.44	0.47	
1.00	0.59	0.29	0.32	0.44	
1.00	0.61	0.56	0.47	0.57	
1.00	0.57	0.29	0.20	0.28	
1.00	0.52	0.27	0.25	0.31	
1.00	0.39	0.19	0.14	0.19	
1.00	0.37	0.18	0.13	0.17	
1.00	0.38	0.51	0.15	0.21	
1.00	0.68	0.39	0.22	0.37	
1.00	0.49	0.51	0.27	0.30	
1.00	0.49	0.36	0.23	0.37	
1.00	0.42	0.29	0.18	0.27	
1.00	1.05	0.00			
1.00	1.34	0.35	0.31	0.31	
1.00	1.09	0.42	0.28	0.47	
1.00	1.08	1.35	1.68	3.96	
1.00	1.42	0.65	1.83	2.22	
1.00	1.94	0.89	2.27	3.20	
1.00	0.23	0.37	0.44	0.51	
1.00	0.63	0.67	0.89	1.15	
1.00	0.47	0.57	0.71	1.01	
1.00	0.53	0.56	0.54	0.75	
1.00	0.55	0.56	1.46	1.29	
1.00	0.89	0.38	1.08	1.51	
1.00	0.12	0.08	0.04	0.08	
1.00	0.54	0.81	1.31	1.50	
1.00	1.02	0.62	1.56	2.16	
1.00	0.97	1.12	1.16	0.85	
1.00	0.96	1.04	1.20	1.10	
1.00	0.75	0.35	0.38	0.38	
1.00	0.66	0.38	0.34	0.33	
1.00	0.71	0.74	0.78	0.67	
1.00	1.59	1.32	0.96	1.14	
1.00	0.66	0.58	0.52	0.40	
1.00	0.49	0.17	0.13	0.14	
1.00	1.15	0.12	0.09	0.16	
1.00	0.88	0.10	0.11	0.16	

Arachidonic acid 유래 OH4 * 24 *\$P7 *\$

Linolenic acid

-유리

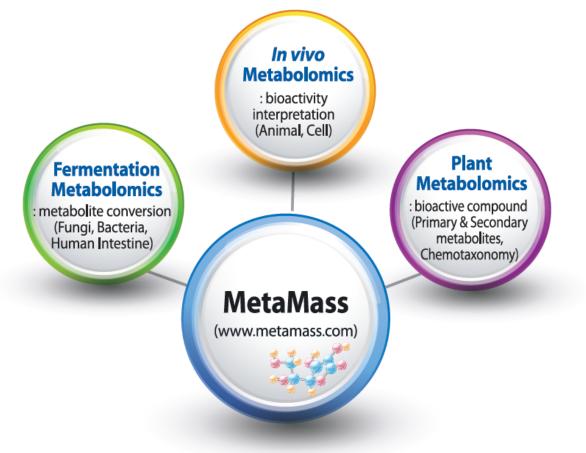

39

oxylipins

Conclusion and application

- Diabetes complications: Plasma Metabolomics in patient with type 2 diabetes mellitus
 Biomarker for prescription
 - Glutamine, glutamic acid, and its ratio can be new biomarkers to predict the prognosis of **diabetic retinopathy**
 - Plasma amino acids and oxylipins as potential multi-biomarkers for predicting diabetic macular edema
- Drug mechanism: Hepatic metabolomic and lipidomic analysis of obese Type
 2 diabetes in a rat model → Biomarker for drug mechanism
 - The effect of pioglitazone on hepatic steatosis

• Oxylipins → Biomarker and Drug


신경정신 질환 바이오마커 발굴

"MetaMass" +

'metabolomics'와 'mass spectrometry'의 합성어로서 21세기 과학산업의 핵심인 생명공학 산업에 있어서 기능성 식품, 천연물, 미생물, 생체 등을 바탕으로 표준화 기술을 확립함으로써 다양한 산업분야에서의 고부가 가치를 창출하고자 하는 대사체 해석 전문 회사입니다.

Pathway analysis / Systems biotechnology

"Meta Mass

Members of Functional Metabolomics Lab. http://www.funcmetabol.com

- Dr. 이나래, Dr. S. Digar, Dr. 손수영

- 연구원: 박정곤, 이지원, 박은진

- 대학원생: 김수현, 이상희, 성송희, 최세린, 이현지, 조효은, 이연희, 박하늘, 이호영

