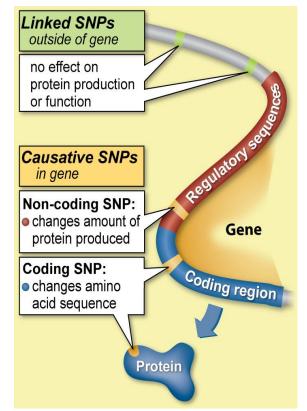


Single nucleotide polymorphism (SNP) studies for prediction, prognosis and prevention in female infertility, atherosclerotic vascular diseases and colorectal cancer


Department of Biomedical Science CHA University

Nam Keun Kim, PhD

SNP in diseases

Single nucleotide polymorphism (SNP)

- SNPs are single-nucleotide substitutions of one base for another.
- 2 or more versions (types) of a sequence must each be present in at >1% (MAF, minor allele frequency) of the population.
- SNPs occur throughout the human genome about 1 in every 300 base pairs.
- Linked SNPs (also called indicative SNPs)
 - located on out of a coding region.
 - do not affect protein function.

- correspond to a drug response or to the risk for getting a certain disease.

Causative SNPs

- affect the way a protein functions / correlating with a disease.
- Coding SNPs: located within the coding region of a gene.
- Non-coding SNPs: located within the gene's regulatory sequences.

Non-protein-coding sequences and diseases

대시의과학대학교

Clin Genet 2013: 84: 422–428 Printed in Singapore. All rights reserved © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12272

Review

Pathogenic variants in non-protein-coding sequences

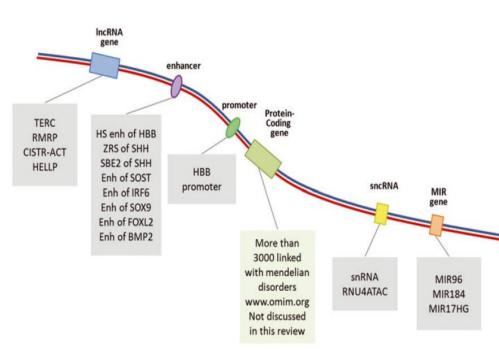


Table 1. Numbers of functional genomic elements.

Genomic element	Number	Source
Protein-coding genes	20330	GENCODE V17 (Feb2013, GRCh37) Ensembl 72
Long non-coding RNAs	13333	GENCODE V17
lincRNAs	6020	GENCODE V17
Pseudogenes	14154	GENCODE V17
Short non-coding RNAs	9078	GENCODE V17
miRNAs	3086	GENCODE V17
Promoters	70292	ENCODE (3)
Enhancers	399124	ENCODE (3)
TFBS (ChIP peaks)	636336	ENCODE (3)

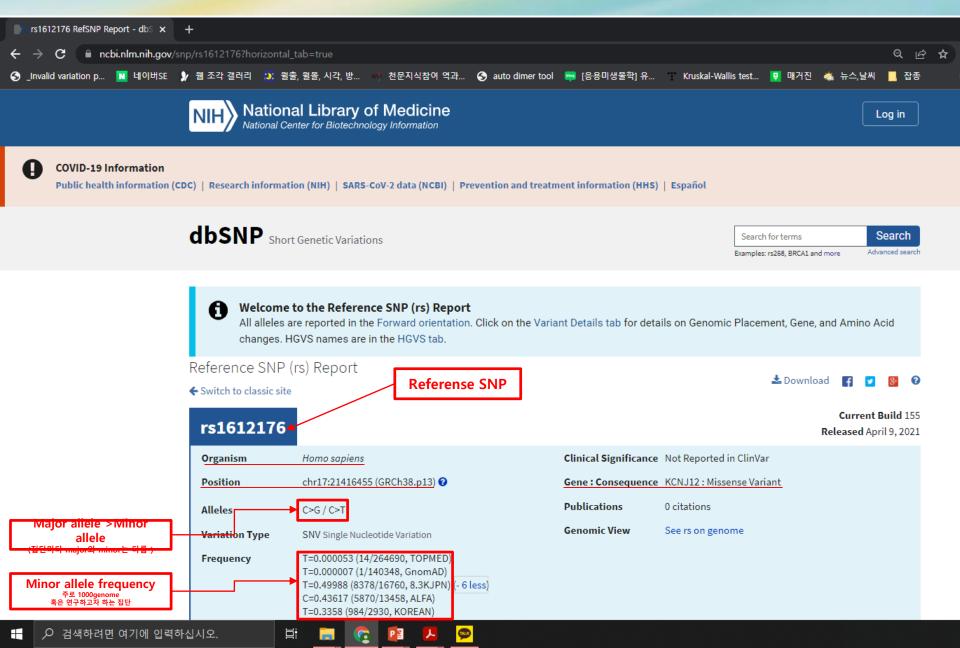
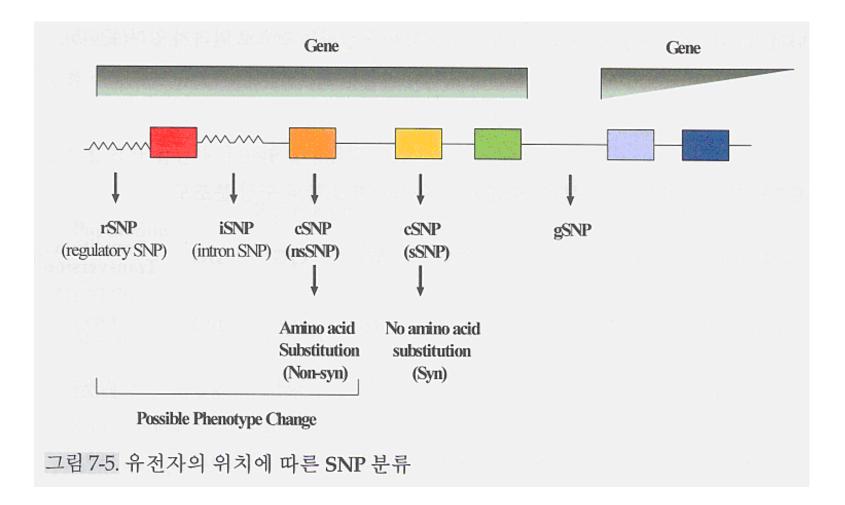
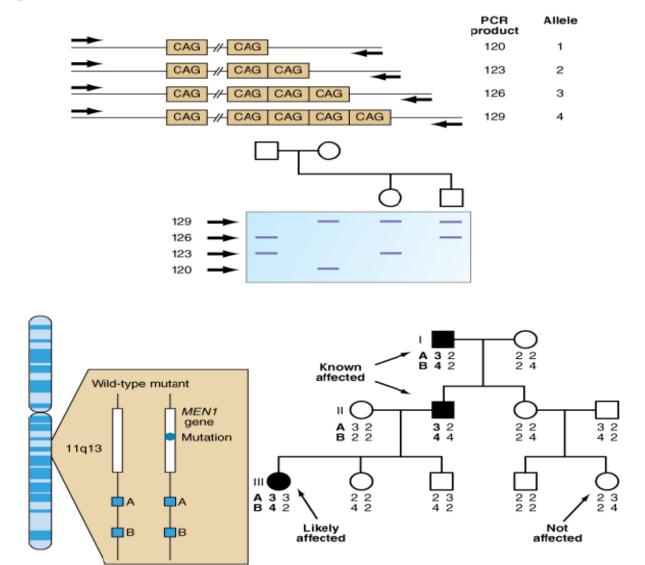

lincRNAs, long intergenic non-coding RNAs; miRNAs, micro RNAs; TFBS, transcription factor binding sites.

Fig. 1. Schematic representation of the different functional genomic elements (shown as colored boxes and ovals), and some examples of pathogenic elements per element for Mendelian disorders. For description and references see text.

Makrythanasis P et al. Clin Genet 2013

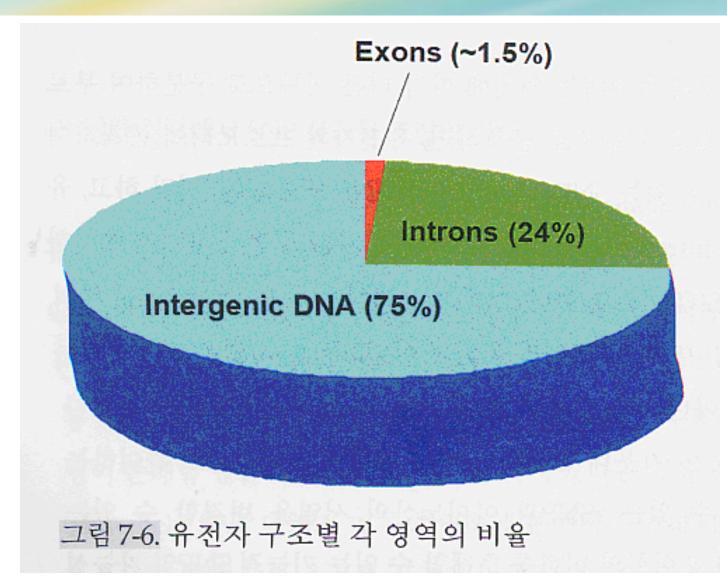

SNP in diseases

유전자 위치에 따른 SNP 표기법



CAG repeat length and linkage analysis in multiple endocrine neoplasia (MEN) type 1.

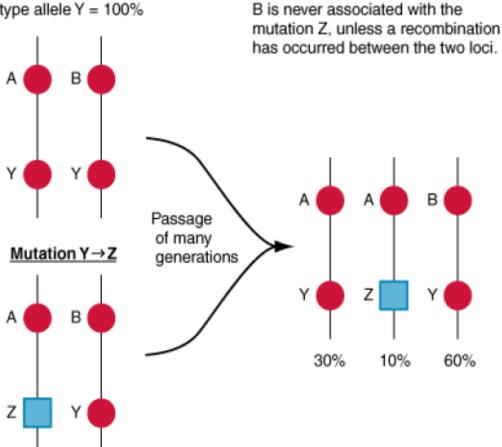
Figure 62-12



Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

Human Genome의 영역별 구성비율

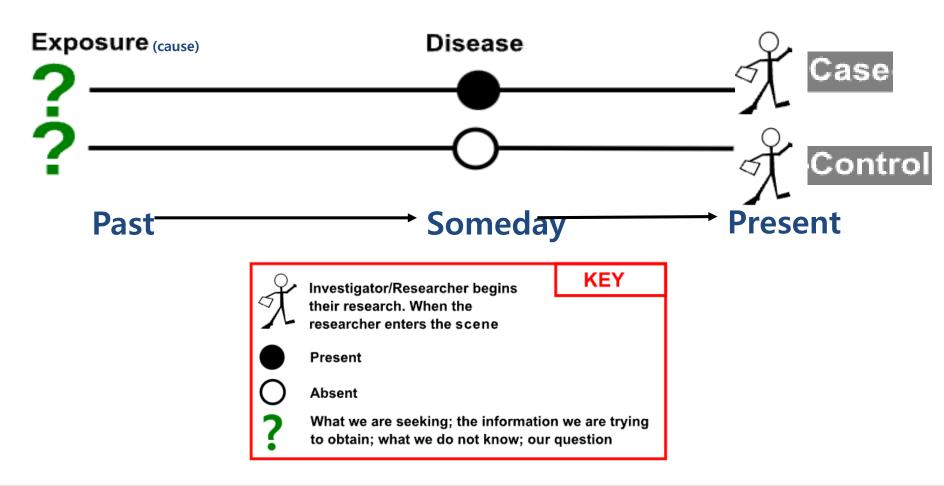


Linkage disequilibrium

Figure 62-13

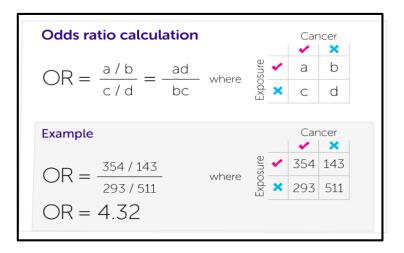
Wild-type: Polymorphic alleles A = 40%; B = 60% Wild-type allele Y = 100%

Linkage disequilibrium: Allele A is


associated with the mutation Z in 10%.

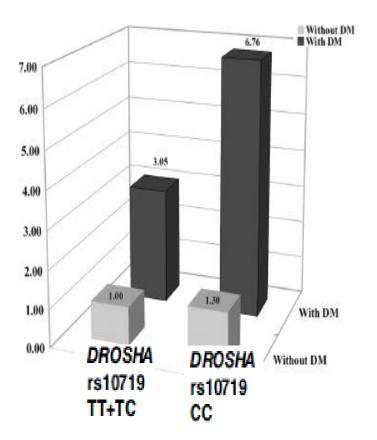
Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: *Harrison's Principles of Internal Medicine*, 17th Edition: http://www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

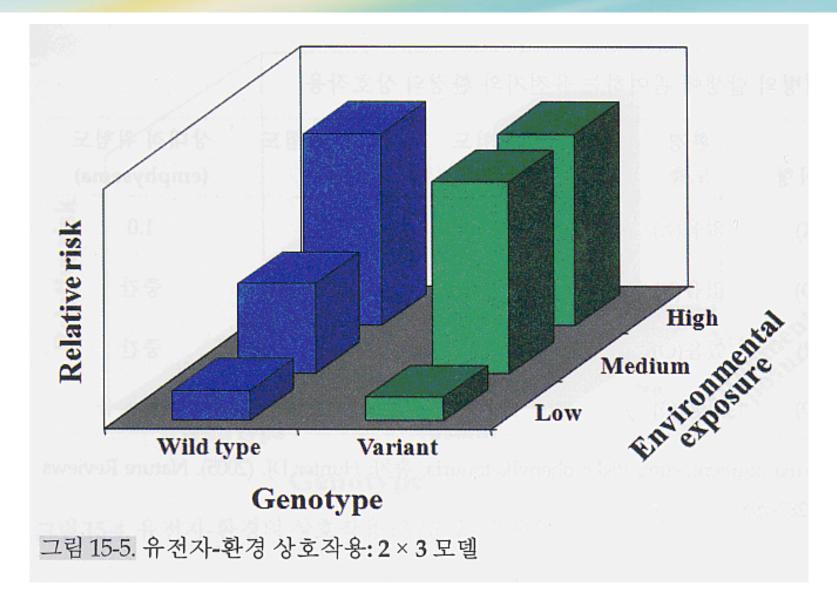

Case-control study

Study design & statistical analyze

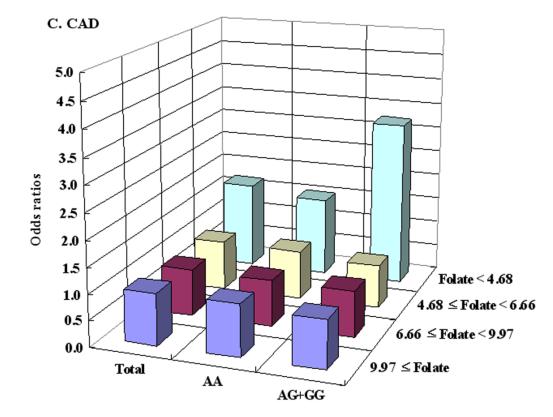
Statistical analyze


	an	Genotypes	Controls (<i>n</i> = 409)	Stroke (n = 507)	<u>AOR (95% CI)</u> *	<i>P</i> ⁺	
			TS 1100 T>C				
	The exposure	Means that the odds of exposure	TT	218 (53.3)	215 (42.4)	1.000 (reference)	
1.0	is not associated	among cases is <u>the same</u> as the	TC	165 (40.3)	235 (46.4)	1.486 (1.115-1.980)	0.007
	with the disease	odds of exposure among controls	CC	26 (6.4)	57 (11.2)	2.151 (1.275-3.628)	0.004
			TT vs TC+CC			1.576 (1.197-2.074)	0.001
1.0	The exposure	Means that the odds of exposure	TT +TC vs CC			1.758 (1.064-2.905)	0.028
>1.0		among cases is greater than the	HWE P	0.480	0.547		
	for the disease	odds of exposure among controls					
	-	Means that the odds of exposure	TS 1170 A>G				
.10	The exposure		AA	190 (46.5)	320 (63.1)	1.000 (reference)	
<1.0	may be protective against the disease	among cases is lower than the	AG	184 (45.0)	170 (33.5)	0.505 (0.377-0.676)	< 0.0001
	against the alsease	odds of exposure among controls	GG	35 (8.6)	17 (3.4)	0.284 (0.151-0.537)	< 0.0001
			AA vs AG+GG			0.472 (0.357-0.626)	< 0.0001
			AA +AG vs GG			0.382 (0.206-0.710)	0.002
		이웃사랑 ·	HWE P	0.306	0.331		
		いている・					

Study design & statistical analyze

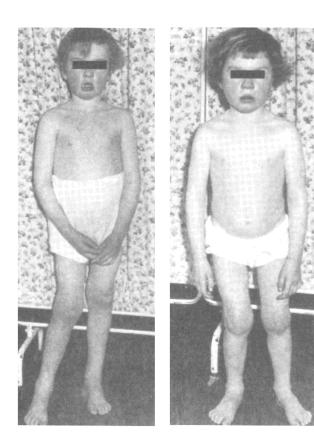

Statistical analyze

Factor	DROSHA rs10719 TT+TC	DROSHA rs10719 CC
DM		
No	1.000 (reference)	<u>1.300 (</u> 0.660– 2.561)
Yes	<u>3.054 (</u> 2.095– 4.452)	<u>6.764 (</u> 1.424– 32.126)


유전자형-환경 상호작용 분석

VKORC1 -1639A>G polymorphism & folate levels in CAD patients

이웃사랑 · 인간존중 · 연구와 탐구


- Elevated levels of plasma homocysteine is an independent risk factor for both heart attack and stroke.

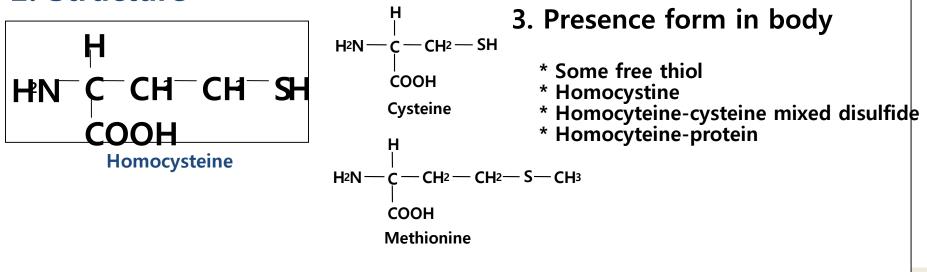
- A meta-analysis (JAMA 2002) suggests that 3 µmol/L reduction was associated with an 11% decrease heart attack and 18% decrease in stroke.

. <u>Homocystinuria</u> is a metabolic disorder due to *Cystathionine b-synthase* (EC 4.2.1.23) deficiency *producing increased urinary homocysteine and methionine.* Major clinical manifestation involve the eyes and the central nervous, skeletal, and vascular system.

The two homocystinuric sisters identified by Carson et al. in the early 1960s 6-year-old sister on the left and 4-year-old on the right. The abnormalities included mental retardation, seizures, and dislocation of ocular lenses. Visible features include mottled skin

and " knock knees." (4살과 6살의 자매환자는 정신지체, 간질증상,수정체이상, 굽은 다리와 망치모양의 무릎을 보이고 있다. 이들은 8살과 9살 때 동맥경화증으로 죽었다.)

Homocysteine

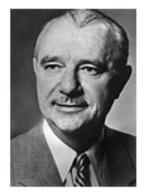

1. History

Finding and Synthesized -- 1932 (duVigneaud, V) Homocystinuria -- 1964 (Mudd, S. H.) Homocysteine theory -- 1969 (McCully, K) "The Homocysteine Revolution" "Beyond Cholesterol" early 1990s, Harvard Medical School

Tuft University etc. support homocyteine theory

recently, Homocysteine protection formula

2. Structure



NOBEL PHYSICS CHEMISTRY MEDICINE LITERATURE PEACE ECONOMICS LAUREATES ARTICLES EDUCATIONAL

The Nobel Prize in Chemistry 1955

"for his work on biochemically important sulphur compounds, especially for the first synthesis of a polypeptide hormone"

Vincent du Vigneaud

USA

Cornell University Ithaca, NY, USA

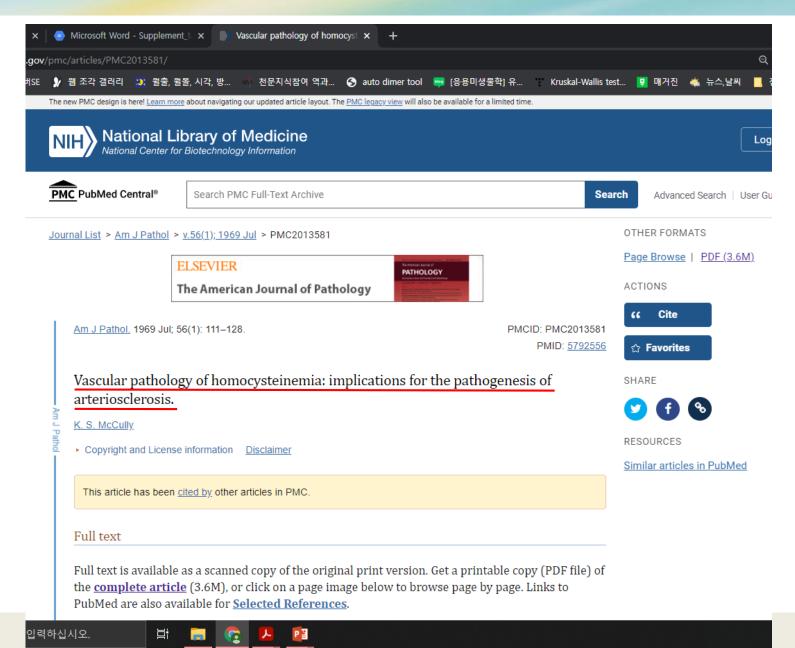
Ь. 1901 d. 1978 The Nobel Prize in Chemistry 1955 Presentation Speech

Vincent du Vigneaud Biography Nobel Lecture Banquet Speech

1954 🕑

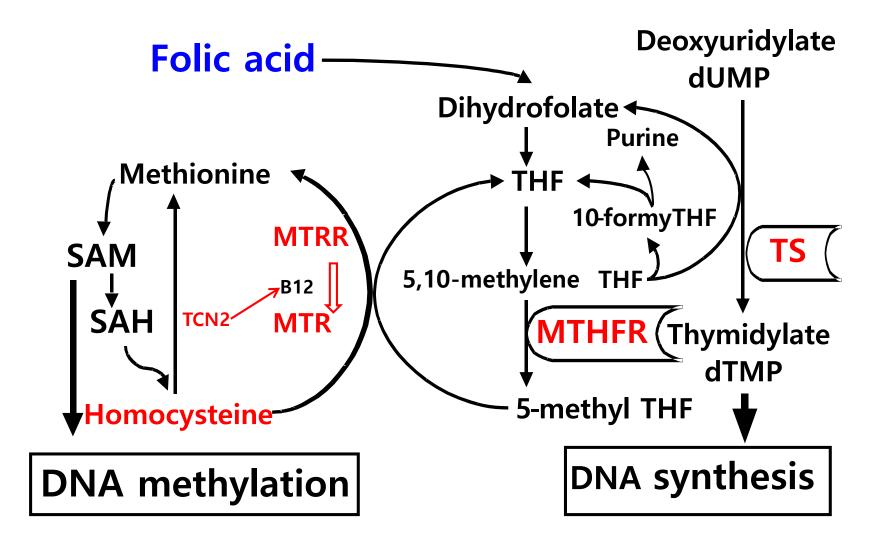
1956 🕑

The 1955 Prize in: Physics <u>Chemistry</u> Physiology or Medicine Literature Peace


Find a Laureate:

Name

Prize Announcements The latest information is found at Nobelprize.org »


(GO)

One-carbon metabolism

Hyperhomocysteinemia, oxidative stress, and cerebral vascular

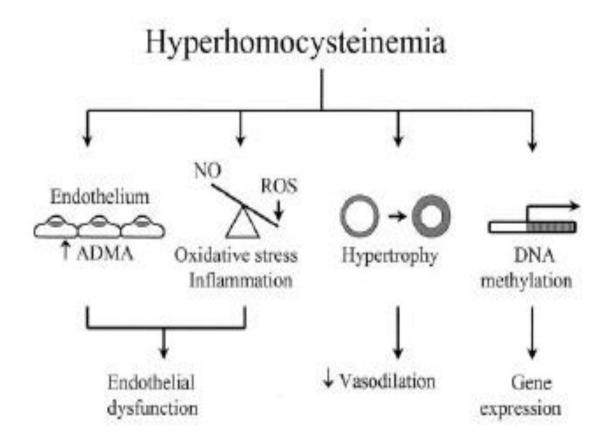




Fig. Schemic summary of selected changes within the vessel wall in response to hyperhomocysteinemia.

Faraci FM et al. Stroke 35:345-7, 2004.

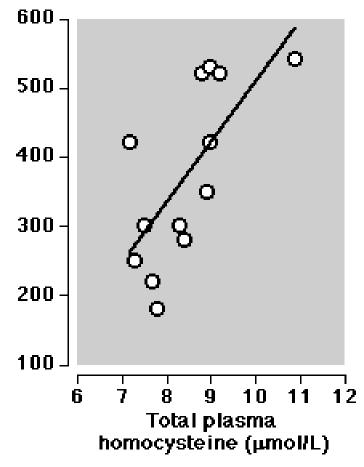
A cohort of 1092 elderly subjects who were free of dementia were studied prospectively. After a median of eight years of follow-up, <u>dementia</u> had developed in 111 subjects. Even after adjustment for other known risk factors, an elevated plasma total homocysteine level at base line was an independent predictor of the development of clinical dementia, most cases of which were caused by Alzheimer's disease. The risk of Alzheimer's disease was nearly doubled for those with the highest plasma homocysteine levels.

Cardiovascular mortality associated with homocysteine level

CHA 의과학대학교

🔺 차병원

이웃사랑 · 인간존중 · 연구와 ¥ollset SE et al. Am J Clin Nutr 74:130-6,2001.

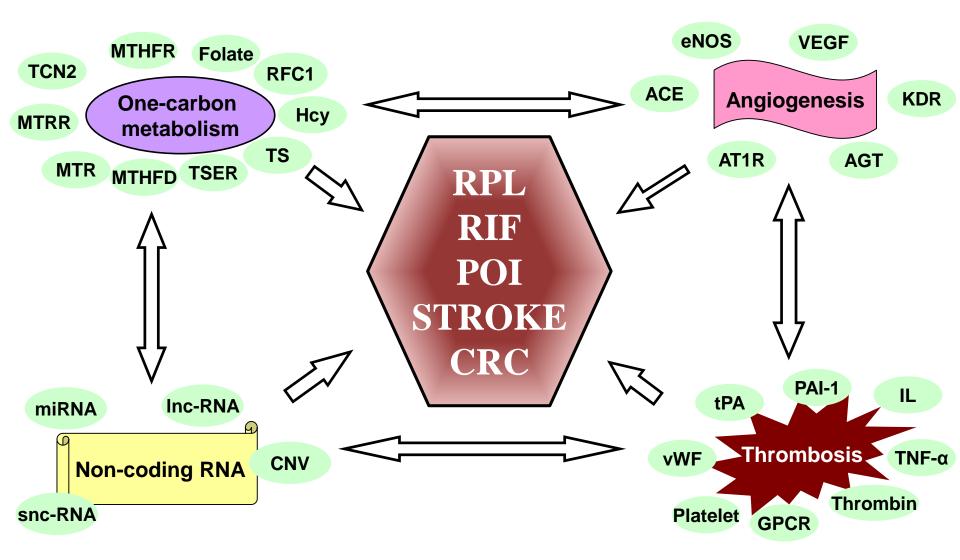

Homocysteine and disease

혈장내에 (생체내에) 호모시스테인의 양이 많으면 심장병 및 뇌졸중 발병율도 증가.

Figure 1: Association between cardiovascular disease mortality and plasma total homocysteine [2]

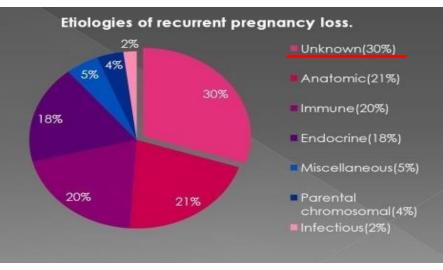
Cardiovascular mortality per 100,000

- McCully KS (Cell Mol Biol 2006;52:1) 이웃사랑 · 인간존중 · 연구파 음구



The purpose of this study

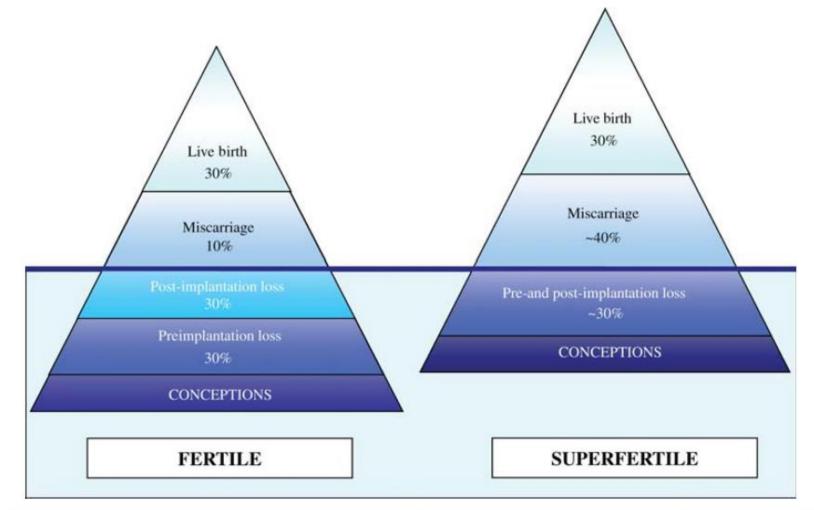
- 1. Identify disease-related genetic polymorphisms that affect the occurrence of 5 diseases.
- 2. Find out the relationship with environmental factors (Nutritional factors, homocysteine, folate, Vitamin B12; Metabolic syndrome factors, DM, HTN, Hyperlipidemia, Obesity, thrombotic factors; PT, aPTT) that interact with genes and affect disease development.
- 3. Identify genetic variants that affect mortality (survival) in ischemic stroke and colorectal cancer.


Our study overview in diseases

The definitive etiologic factors for RPL

연도	구분	계	19세이하	2001	30CH	40대이상
	분만인원(명)	418,445	1,072	162,541	248,656	6,176
2007년	유산인원(명)	101,898	896	35,143	56,900	8,959
	뮤산뮬(%)	19.6	45.5	17.8	18.6	59.2
	분만인원(명)	412,654	1,286	156,597	247,542	7,229
2008년	유산인원(명)	103,662	876	34,534	58,331	9,921
	유산율(%)	20.1	40.5	18.1	19.1	57.8
	분만인원(명)	393,447	1,329	139,837	244,316	7,965
2009년	유산인원(명)	100.035	829	30,259	58,811	10,136
	유산율(%)	20.3	38.4	17.8	19.4	56.0

표 1. 국민건강보험공단 자료 '연도 · 연령 · 지역별 자연유산율 현황' (이철영, 2010)


O'Connor et al. Maturitas 1998

- Recurrent pregnancy loss(RPL) is a disease distinct from infertility, defined by two or more failed pregnancies before 20 weeks of gestation.
 - It also called Recurrent Spontaneous Abortion (RSA), Recurrent Miscarriage (RM), Habitual Abortion (HA)

2013, ASRM

The definitive etiologic factors for RPL

Teklenburg G et al. The molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol Hum Reprod 2010

이웃사랑 · 인간존중 · 연구와 탐구

To related factors for early pregnancy

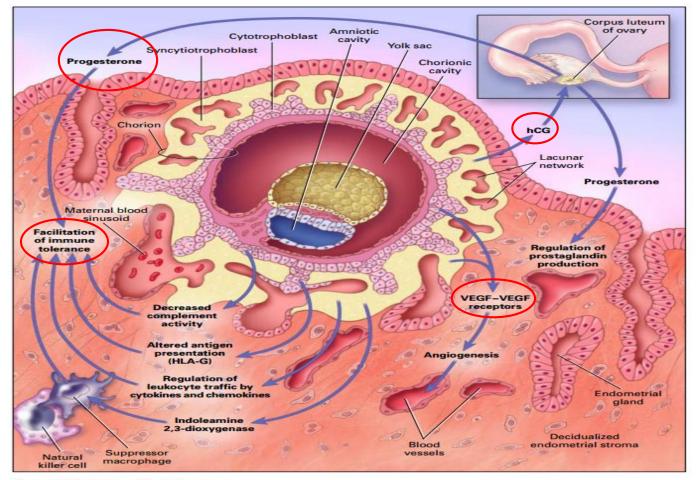


Figure 3. Maintenance of Early Pregnancy.

The diagram shows an implanted embryo (approximately 14 days after conception) and the processes necessary for the maintenance of an early pregnancy. VEGF denotes vascular endothelial growth factor, and hCG human chorionic gonadotropin.

Teklenburg G et al. Implantation and the survival of early pregnancy. N Engl J Med 2001

Riboflavin as a Determinant of Plasma Total Homocysteine: Effect Modification by the Methylenetetrahydrofolate Reductase C677T Polymorphism

STEINAR HUSTAD,* PER MAGNE UELAND, STEIN EMIL VOLLSET, YING ZHANG, ANNE LISE BJØRKE-MONSEN, and JØRN SCHNEEDE

Table	2. Plasma tHcy and vitamin	status according to MTHFR	C677T genotype.				
	Genotype*						
	CC (n = 204)	CT (n = 182)	TT (n = 37)	P ^b			
Plasma tHcy, µmol/L	8.6 (8.3–9.0)	9.1 (8.8–9.5)	11.5 (9.7-13.5)	0.03			
Plasma riboflavin, nmol/L	13.3 (12.1-14.6)	13.7 (12.6-15.0)	12.1 (10.0-14.7)	0.6			
Plasma FMN, nmol/L	7.5 (7.0-8.0)	7.9 (7.5–8.4)	7.1 (5.9-8.4)	0.2			
Plasma FAD, nmol/L	59.3 (57.7-60.9)	60.7 (59.0-62.5)	56.6 (52.7-60.8)	0.2			
Serum folate, nmol/L	16.4 (15.6-17.2)	15.0 (14.3-15.9)	13.2 (11.6-15.0)	0.02			
Serum cobalamin, pmol/L	381 (365–397)	379 (362-398)	360 (325-400)	0.9			

" Data are given as geometric mean with 95% confidence intervals in parentheses.

^b By ANOVA, adjusted for age and sex.

Hustad S et al. Clin Chem 46:1065-1071, 2000.

Neonatal and fetal MTHFR genetic polymorphisms: An examination of 677C>T and 1298A>C mutations

Table 2

^a NO = not observed.
 ^b By Fisher's exact test.

Combined C677T/A1298C MTHFR Genotype Frequencies and Allele Frequencies for Neonatal and Fetal Groups

	OBSERVED F	REQUENCY			
GENOTYPE OR ALLELE	Neonatal Group $(n = 119)^a$	Fetal Group $(n = 161)$	ODDS RATIO (95% CI)	P^{b}	
MTHFR C677T/A1298C genotype:					
CC/AA	.143	.155	1.1 (.57-2.2)	.866	
CC/AC	.353	.335	.93 (.6-1.5)	.800	
CC/CC	.076	.107	1.3 (.6-3.2)	.415	
CT/AA	.117	.174	.2 (.8-3.2)	.237	
CT/AC	.193	.168	.8 (.5-1.6)	.637	
CT/CC	NO	.031	8.4 (.5-153.5)	.074	
TT/AA	.101	.012	.1 (.025)	.001	
TT/AC	.017	.012	.7 (.1-5.3)	1.000	
TT/CC	NO	.006	2.2 (.1-55.4)	1.000	
Combined CT/CC and TT/CC	NO	.037	10.0 (.6-179.2)	.040	
MTHFR allele:					
677C	.727	.783			
677T	.273	.217			
1298A	.643	.599			
1298C	.357	.401			

Prevalent genotypes of MTHFR 677C>T and 1298A>C in spontaneously aborted embryos

TABLE 1

Individual MTHFR genotype distributions for spontaneously aborted embryos and control groups.

		Controls	(n = 549)				
	Abortus	Child	Adult	Child control-ba	sed	Adult control-ba	sed
Genotype	(n = 94) (%)	(n = 100) (%)	(n = 449) (%)	Odds ratio (95% Cl)	Pa	Odds ratio (95% Cl)	Pa
MTHFR C6	77T						
CC	38 (40.4)	24 (24.0)	145 (32.3)	2.149 (1.164-3.967)	0.022	1.423 (0.903–2.247)	0.163
CT	39 (41.4)	55 (55.0)	239 (53.2)	0.570 (0.324-1.003)	0.071	0.612 (0.392-0.957)	0.041
Π	17 (18.1)	21 (21.0)	65 (14.5)	0.831 (0.411–1.680)	0.741	1.304 (0.730–2.334)	0.465
C allele	0.612	0.515	0.590				
T allele	0.388	0.485	0.410				
MTHFR A12	298C						
AA	63 (67.0)	77 (77.0)	312 (69.5)	0.607 (0.320-1.139)	0.165	0.892 (0.557-1.430)	0.728
AC	28 (29.8)	21 (21.0)	129 (28.7)	1.596 (0.834–3.051)	0.214	1.052 (0.649-1.708)	0.936
CC	3 (3.2)	2 (2.0)	8 (1.8)	1.615 (0.315–8.263)	0.944	2.329 (0.656–8.317)	0.409
A allele	0.819	0.875	0.840				
C allele	0.181	0.125	0.160				
MTHFR C6	77T/A12980	0					
CC/AA	17 (18.1)	14 (14.0)	85 (18.9)	1.356 (0.634–2.899)	0.562	0.945 (0.535–1.673)	0.964
CC/AC	18 (19.1)	8 (8.0)	52 (11.6)	2.724 (1.143–6.469)	0.039	1.808 (1.009–3.243)	0.068
CC/CC	3 (3.2)	2 (2.0)	8 (1.8)	1.815 (0.353–9.297)	0.843	1.817 (0.514–6.456)	0.631
CT/AA	28 (29.8)	42 (42.0)	162 (36.1)	0.586 (0.324–1.058)	0.105	0.752 (0.466–1.214)	0.296
CT/AC	11 (11.7)	13 (13.0)	77 (17.2)	0.887 (0.383–2.055)	0.955	0.640 (0.330–1.245)	0.250
TT/AA	17 (18.1)	21 (21.0)	65 (14.5)	0.864 (0.427–1.751)	0.864	1.304 (0.730–2.334)	0.465

^a By Fisher's exact test.

Bae. Prevalent MTHFR genotypes in abortus. Fertil Steril 2007.

Phillip A et al. Am J Hum Genet 2000

Bae JH et al. Fertil and Steril 2007

Association study between methylenetetrahydrofolate reductase polymorphisms and unexplained recurrent pregnancy loss: A meta-analysis.

Study ID	Year	Exposed n[e](E=1)/n[e]	Control n[c](E=1)/n[c]			Weight (%)		Association measure with 95% CI
Makino et al.	2004	10/85	15/76		I	8.38%	I	0.5422 (0.2275 to 1.2924)
Guan et al.	2005	55/127	25/117			10.69%		2.8111 (1.5986 to 4.9433)
Dong et al.	2006	20/36	18/57			8.42%	1	2.7083 (1.1431 to 6.4169)
Ma et al.	2008	16/60	7/60			7.64%	1	2.7532 (1.0396 to 7.292)
Mitic et al.	2009	36/222	14/122		-+	9.95%	I	1.4931 (0.7707 to 2.8926)
Zhang et al.	2009	19/56	8/50			7.90%	I.	2.6959 (1.0565 to 6.8797)
Wang et al.	2002	16/62	5/119	Studies		7.08%	I.	7.9304 (2.745 to 22.9117)
Li et al.	2004	9/57	5/50	R .		6.44%	1	1.6875 (0.5256 to 5.4176)
Kobashi et al.	2005	3/38	25/174		<u> </u>	5.97%	1	0.5109 (0.1459 to 1.7882)
Song et al.	2005	12/50	4/56			6.22%	I	4.1053 (1.2286 to 13.7178)
Wang et al.	2006	20/147	5/82			7.34%	I	2.4252 (0.8745 to 6.7259)
Zhong et al.	2010	16/141	3/160			5.95%	1	6.6987 (1.9091 to 23.5049)
Shin et al.	2011	7/33	32/155	_		8.01%	1	1.0349 (0.4121 to 2.5987)
META-ANALYSIS:		239/1114	166/1278			100%		2.1124 (1.4005 to 3.1862)
				0.1	1 10	100		
				0.1	1 10 OR (log scale)	100		
Study ID	Year	Exposed n[e](E=1)/n[e]	Control n[c](E=1)/n[c]	0.1		100 Weight (%)		Association measure with 95% Cl
		n[e](E=1)/n[e]	n[c](E=1)/n[c]	0.1		Weight (%)		with 95% Cl
Nair et al.	2012	n[e](E=1)/n[e]	n[c](E=1)/n[c] 1/140	0.1		Weight (%) 3.07%	I	with 95% Cl 6.8812 (0.7918 to 59.8035)
		n[e](E=1)/n[e]	n[c](E=1)/n[c]	0.1		Weight (%)	1	with 95% Cl
Nair et al.	2012	n[e](E=1)/n[e]	n[c](E=1)/n[c] 1/140	0.1		Weight (%) 3.07%		with 95% Cl 6.8812 (0.7918 to 59.8035)
Nair et al. M.R.R.G et al.	2012 2009	n[e](E=1)/n[e] 5/106 10/23	n[c](E=1)/n[c] 1/140 19/74			Weight (%) 3.07% 19.03% 29.04%		with 95% Cl 6.8812 (0.7918 to 59.8035) 2.2267 (0.8395 to 5.9066)
Nair et al. M.R.R.G et al. Couto et al.	2012 2009 2005	n[e](E=1)/n[e] 5/106 10/23 12/88	n[c](E=1)/n[c] 1/140 19/74 9/88	0.1		Weight (%) 3.07% 19.03% 29.04%		with 95% CI 6.8812 (0.7918 to 59.8035) 2.2267 (0.8395 to 5.9066) 1.386 (0.5524 to 3.4773)
Nair et al. M.R.R.G et al. Couto et al. Mtiraoui et al.	2012 2009 2005 2006	n[e](E=1)/n[e] 5/106 10/23 12/88 61/200	n[c](E=1)/n[c] 1/140 19/74 9/88 14/200			Weight (%) 3.07% 19.03% 29.04% 36.36%		with 95% CI 6.8812 (0.7918 to 59.8035) 2.2267 (0.8395 to 5.9066) 1.386 (0.5524 to 3.4773) 5.8304 (3.1333 to 10.8493)
Nair et al. M.R.R.G et al. Couto et al. Mtiraoui et al. Vettriselvi et al.	2012 2009 2005 2006 2008	n[e](E=1)/n[e] 5/106 10/23 12/88 61/200 3/104	n[c](E=1)/n[c] 1/140 19/74 9/88 14/200 3/120			Weight (%) 3.07% 19.03% 29.04% 36.36% 10.11%		with 95% Cl 6.8812 (0.7918 to 59.8035) 2.2267 (0.8395 to 5.9066) 1.386 (0.5524 to 3.4773) 5.8304 (3.1333 to 10.8493) 1.1584 (0.2287 to 5.867)

Cao Y et al. Gene 2013

One-carbon metabolism - RPL

OR (log scale)

1

0.1

10

100

Association study of vascular endothelial growth factor $extsf{a}$ polymorphisms with the risk of recurrent spontaneous abortion

Hyun Haing Lee, M.D.,^{a,b,*} Seung Ho Hong, Ph.D.,^{c,*} Seung Ju Shin, M.D.,^a Jung Jae Ko, Ph.D.,^d Doyeun Oh, M.D.,^b and Nam Keun Kim, Ph.D.^b

TABLE 1				TABLE 2			
	f VEGF -2578C > A, -1154G current spontaneous abortic	on and in controls.			-2578C > A, -1154G > A, -634G us abortion and in controls.	> C and 936C > T haplotypes i	n patients with
Genotype	No. of controls (%)	No. of cases (%)	AOR (95% CI)*	Haplotype	Cases	Controls	Р
VEGF -2578C>A	/ //					Controls	F
CC	60 (53.1)	107 (49.8)	1.000	VEGF -2578C>A/-115	4G>A/- 634G>C/936C>T		
CA	45 (39.8)	94 (43.7)	1.191 (0.703–2.016)	C-G-C-C	0.355	0.377	0.573
AA CA+AA	8 (7.1) 53 (46.9)	14 (6.5) 108 (50.2)	0.794 (0.284–2.218) 0.906 (0.547–1.501)	C-G-G-C	0.263	0.261	0.965
Allele frequency (A)	0.27	0.28	0.900 (0.947-1.901)	A-A-G-C	0.128	0.113	0.566
VEGF -1154G>A	0.21	0.20		A-G-G-C	0.059	0.057	0.901
GG	81 (71.7)	130 (60.5)	1.000	A-G-G-T	0.040	0.071	0.092
GA	23 (20.4)	80 (37.2)	2.774 (1.512-5.092)	C-G-C-T	0.048	0.026	0.165
AA	9 (8.0)	5 (2.3)	0.287 (0.077-1.070)				
GA+AA	32 (28.3)	85 (39.5)	2.006 (1.158-3.473)	A-A-G-T	0.050	0.019	0.051
Allele frequency (A)	0.18	0.21		C-G-G-T	0.019	0.016	0.784
VEGF -634G>C				C-A-G-C	0.015	0.024	0.417
CC	21 (18.6)	34 (15.8)	1.000	C-A-C-C	0.013	0.011	0.832
GC GG	54 (47.8)	114 (53.0)	2.074 (0.970–4.436) 1.634 (0.765–3.493)	A-G-C-C	6.31E-03	0.011	0.520
GC+GG	38 (33.6) 92 (81.4)	67 (31.2) 181 (84.2)	1.826 (0.913–3.653)	C-A-G-T	2.43E-03	0.015	0.060
Allele frequency (G)	0.57	0.58	1.020 (0.913-0.000)	C-A-C-T	1.14E-03	2.98E-59	0.612
VEGF 936C>T	0.01	0.00		VEGF -1154G>A/-634		2.002 00	0.012
CC	82 (72.6)	149 (69.3)	1.000			0.000	0.050
CT	29 (25.7)	63 (29.3)	1.047 (0.597-1.838)	G-G-T	0.052	0.092	0.050
Π	2 (1.8)	3 (1.4)	1.876 (0.189–18.581)	G-C-T	0.052	0.023	0.081
CT+TT	31 (27.4)	66 (30.7)	1.082 (0.622-1.882)	VEGF -2578C>A/-115			
Allele frequency (T)	0.15	0.16		A-A-T	0.051	0.021	0.063
Total	113 (100.0)	215 (100.0)			1		
*Adjusted by age and body n	nass index.				Lee H	H et al. Fertil S	
giogenesis -	RPL		이웃사랑 · 인간존중	· 연구와 탐구			33

Tumor Necrosis Factor-α Gene Polymorphisms in Korean Patients With Recurrent Spontaneous Abortion

Reproductive Sciences 20(4) 408-413 © The Author(s) 2012 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/1933719112459237 rs.sagepub.com ;원

Bo Eun Lee, BS^{1,2}, Young Joo Jeon, MS^{1,2}, Ji Eun Shin, MD³, Ji Hyang Kim, MD³, Dong Hee Choi, MD³, Yong Wook Jung, MD⁴, Sung Han Shim, PhD⁵, Woo Sik Lee, MD⁵, and Nam Keun Kim, PhD^{1,2}

Table 1. Genotype Frequencies of TNF-a -1031T>C, -376G>A, -308G>A, and -238G>A Polymorphisms in Korean Patients With Recurrent Spontaneous Abortion and in Controls.

Characteristics	Controls, n=236	Patients With RSA, $n=357$	COR (95% CI)	AOR (95% CI)	Pa
TNF-α -1031T>C					
TT	191 (80.9)	230 (64.4)	1.000		
TC	45 (Ì9.I)	115 (32.2)	2.122 (1.430-3.149)	2.071 (1.392-3.081)	<.001
CC	_	12 (3.4)	20.770 (1.221-353.330)	NA	NA
TC+CC			2.344 (1.586-3.463)	2.292 (1.547-3.395)	<.001
HWE P	0.105	0.605			
TNF-α -376G>A					
GG	236 (100.0)	357 (100.0)			
GA	_	-	NA	NA	NA
AA	-	-	NA	NA	NA
TNF-α -308G>A					
GG	213 (90.3)	319 (89.4)	1.000		
GA	21 (8.9)	36 (10.1)	1.145 (0.650-2.015)	1.149 (0.652-2.024)	.631
AA	2 (0.8)	2 (0.5)	0.668 (0.093-4.779)	0.713 (0.099-5.119)	.737
GA+AA			1.103 (0.639-1.905)	1.111 (0.643-1.920)	.705
HWE P	0.083	0.379	. ,	, , ,	
TNF-α -238G>A					
GG	228 (96.6)	330 (92.4)	1.000		
GA	8 (3.4)	26 (7.3)	2.245 (0.999-5.050)	2.237 (0.994-5.033)	.052
AA	_	I (0.3)	2.074 (0.084-51.182)	NA	NA
GA+AA		. /	2.332 (1.040-5.226)	2.327 (1.038-5.217)	.040
HWE P	0.791	0.526		· · · · · · · · · · · · · · · · · · ·	

Table 2. Combination Analysis of TNF-α -1031T>C, -308G>A, and -238G>A Polymorphisms in Korean Patients With Recurrent Spontaneous Abortion and in Controls.

Characteristics	Controls, n = 236	Patients With RSA, $n=357$	AOR (95% CI)	Pª
TNF-α -1031T>C/-308G>A				
TT/GG	171 (72.5)	197 (55.2)	1.000	
TT/GA+AA	20 (8.4)	33 (9.2)	1.425 (0.786-2.583)	.243
TC+CC/GG	42 (17.8)	122 (34.2)	2.467 (1.639-3.714)	<.001
TC+CC/GA+AA	3 (1.3)	5 (1.4)	1.420 (0.334-6.044)	.635
TNF-α -1031T>C/-238G>A			, ,	
TT/GG	188 (79.7)	228 (63.9)	1.000	
TT/GA+AA	3 (1.3)	2 (0.5)	0.526 (0.087-3.187)	.485
TC+CC/GG	40 (16.9)	102 (28.6)	2.037 (1.343-3.090)	.001
TC+CC/GA+AA	5 (2.1)	25 (7.0)	4.054 (1.520-10.812)	.005
TNF-α -308G>A/-238G>A				
GG/GG	205 (86.9)	292 (81.8)	1.000	
GG/GA+AA	8 (3.4)	27 (7.6)	2.366 (1.053-5.317)	.037
GA+AA/GG	23 (9.7)	38 (10.6)	1.169 (0.675-2.023)	.577

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; RSA, recurrent spontaneous abortion; TNF-a, tumor necrosis factor-a. ^a Adjusted by age of all participants.

Abbreviations: HWE, Hardy-Weinberg equilibrium; COR, crude odds ratio; AOR, adjusted odds ratio; CI, confidence interval; NA, not applicable; RSA, recurrent spontaneous abortion; TNF-α, tumor necrosis factor α.

^a Adjusted by age of all participants.

Interleukin-1beta-511T > C genetic variant contributes to recurrent pregnancy loss risk and peripheral natural killer cell proportion

Jung O Kim, M.S.,^{a,b} Woo Sik Lee, M.D., Ph.D.,^c Bo Eun Lee, M.S.,^{a,b} Young Joo Jeon, Ph.D.,^{a,b} Young Ran Kim, M.D., Ph.D.,^d Sang Hee Jung, M.D., Ph.D.,^d Sung Woon Chang, M.D., Ph.D.,^d and Nam Keun Kim, Ph.D.^{a,b}

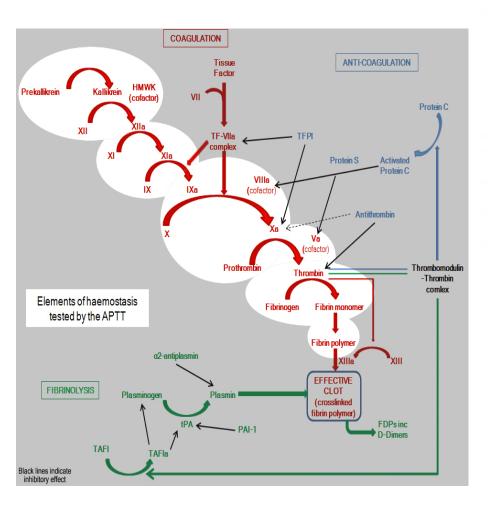
TABLE 2

Genotype frequencies of interleukin gene polymorphisms between controls and RPL patients. P P Characteristic Controls (n = 232), n (%) RPL patients (n = 385), n (%) AOR (95% CI) IL-18-511T>C 73 (31.5) 99 (25.7) 1.000 (reference) TT TC 657 190 (49.4) 1.168 (0.799-1.706) 423 120(517)CC 39 (16.8) 96 (24.9) 1.826(1.130 - 2.953)014 Dominant 1.327 (0.927-1.901) 123 369 Recessive .648 (1.089-2.495) 018 036 T allele 266 (57.3) 388 (50.4) 1.000 (reference) 1.324 (1.050-1.670) C allele 198 (42.7) 382 (49.6) 018 054 HWE P 384 .800 IL-4 intron3 VNTR B1B1 149 (64.2) 238 (61.8) 1.000 (reference) 74 (31.9) 128 (33.2) 1.083(0.762 - 1.540)657 657 **B1B2** 9 (3.9) 1.364 (0.598-3.115) B2B2 19(4.9)461 461 Dominant 1.110 (0.791-1.556) 546 698 1.292 (0.574-2.906) Recessive 536 .536 B1 allele 372 (80.2) 604 (78.4) 1.000 (reference) 166 (21.6) B2 allele 92 (19.8) 1.113 (0.836-1.481) 464 696 HWE P .960 .739 /L-10-1082A>G AA 198 (85.3) 333 (86.5) 1.000 (reference) AG 0.877 (0.548-1.403) 583 .657 34(14.7)50 (13.0) GG 0 2 (0.5) NA NA NA Dominant 0.912 (0.572-1.454) 698 698 Recessive NA NA NA 1.000 (reference) 430 (92.7) 716 (93.0) A allele G allele 34 (7.3) 54(7.0)0.957 (0.613-1.494) 845 .845 HWE P .228 .934

SUPPLEMENTAL TABLE 2

Allelic gene-gene interactions of interleukin polymorphisms according to the number of pregnancy losses.

Allelic combinations	Controls (2n = 464), n (%)	PL = 2 (2n = 360), n (%)	OR (95% CI)	P	Pb	PL ≥ 3 (2n = 410), n (%)	OR (95% CI)	P	Pb
IL-1 <i>B/IL-4/IL-10</i>									
T-B1-A	201 (43.3)	130 (36.1)	1.000 (reference)			161 (39.3)	1.000 (reference)		
T-B1-G	22 (4.7)	9 (2.5)	0.633 (0.282-1.417)	.335	.531	5 (1.2)	0.284 (0.105-0.766)	.009	.032
T-B2-A	43 (9.3)	29 (8.1)	1.043 (0.620-1.754)	.895	1.000	40 (9.8)	1.161 (0.720-1.873)	.544	.699
T-B2-G	0 (0.0)	7 (1.9)	23.161 (1.311-409.258)	.002	.014	7 (1.7)	18.715 (1.060-330.376)	.004	.028
C-B1-A	142 (30.6)	135 (37.5)	1.470 (1.064-2.030)	.022	.077	145 (35.4)	1.275 (0.934-1.739)	.133	.310
C-B1-G	7 (1.5)	10 (2.8)	2.209 (0.820-5.950)	.131	.306	8 (2.0)	1.427 (0.507-4.019)	.599	.699
C-B2-A	45 (9.7)	37 (10.3)	1.271 (0.781-2.071)	.379	.531	39 (9.5)	1.082 (0.672-1.742)	.808.	.808
C-B2-G	4 (0.9)	3 (0.8)	1.160 (0.255-5.268)	1.000	1.000	5 (1.2)	1.561 (0.412-5.909)	.521	.699
IL-1β/IL-4									
T-B1	223 (48.1)	139 (38.6)	1.000 (reference)			166 (40.5)	1.000 (reference)		
T-B2	43 (9.3)	35 (9.7)	1.306 (0.797–2.140)	.309	.309	48 (11.7)	1.500 (0.948-2.371)	.101	.152
C-B1	149 (32.1)	146 (40.6)	1.572 (1.151–2.146)	.004	.012	153 (37.3)	1.379 (1.020–1.866)	.038	.114
C-B2	49 (10.6)	40 (11.1)	1.310 (0.820-2.092)	.278	.309	43 (10.5)	1.179 (0.747–1.861)	.485	.485


Kim JO et al. Fertil Steril 2014

Cytokine - RPL

위

Coagulation & Thrombosis

Morange PE et al. Arterioscler Thromb Vasc Biol 2007

Coagulation & Thrombosis - RPL

Genetic association of five plasminogen activator inhibitor-1 (PAI-1) polymorphisms and idiopathic recurrent pregnancy loss in Korean women

Young Joo Jeon^{1,*}; Young Ran Kim^{2,*}; Bo Eun Lee¹; Yi Seul Choi¹; Ji Hyang Kim²; Ji Eun Shin²; HyungChul Rah¹; Sun Hee Cha²; Woo Sik Lee³; Nam Keun Kim¹

¹Institute for Clinical Research, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, South Korea; ²Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, South Korea; ³Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, South Korea;

Characteristics	Controls (n=227, %)	RPL patients (n=308, %)	AOR (95% CI)	Pa	PAI-1 genotypes	Plasma PAI-1 (ng/ml)	PLT	PT	aPTT
<i>PAI-1 –</i> 844G>A							(10 ³ cells/µl)	(sec)	(sec)
GG	72 (31.7)	115 (37.3)	1.000 (reference)					. ,	
GA	120 (52.9)	133 (43.2)	0.692 (0.471 – 1.017)	0.061	-844GG	10.37 ± 6.23 (n=41)	244.28 ± 60.56	11.71 ± 0.69	32.63 ± 4.29
AA	35 (15.4)	60 (19.5)	1.079 (0.647 – 1.798)	0.772	-844GA	10.80 ± 5.54 (n=42)	248.45 ± 53.24	11.49 ± 0.80	32.02 ± 4.24
Dominant (GG vs GA+AA)			0.776 (0.540 – 1.115)	0.171	-044UA	10.00 ± 0.04 (II-42)	240.4J 1 33.24	11.45 1 0.00	JZ.02 I 4.24
Recessive (GG+GA vs AA)			1.322 (0.836 – 2.090)	0.232	-844AA	13.12 ± 5.49 (n=21)	278.86 ± 59.69	11.25 ± 0.91	31.48 ± 4.68
HWE P	0.194	0.058							
PAI-1675 4G/5G					Pa	0.198	0.011	0.013	0.403
5G5G	39 (17.2)	47 (15.3)	1.000 (reference)		5G5G	9.82 ± 6.33 (n=21)	218.19 ± 42.78	11.76 ± 0.71	33.34 ± 4.33
4G5G	117 (51.5)	132 (42.9)	0.935 (0.571 – 1.530)	0.788	0000	9.02 ± 0.55 (II=21)	210.19 ± 42.70	11.70 ± 0.71	33.34 I 4.33
4G4G	71 (31.3)	129 (41.9)	1.496 (0.894 - 2.505)	0.125	4G5G	10.93 ± 5.55 (n=40)	253.29 ± 61.60	11.81 ± 0.63	32.30 ± 3.88
Dominant (5G5G vs 4G5G+4G4G) Recessive (5G5G+4G5G vs 4G4G)			1.151 (0.724 – 1.831) 1.578 (1.100 – 2.264)	0.553	1010				24.40 4.24
HWE P	0.436	0.174	1.578 (1.100 – 2.204)	0.015	4G4G	11.88 ± 5.91 (n=43)	265.29 ± 56.15	11.13 ± 0.83	31.48 ± 4.74
PAI-1 43G>A	0.450	0.174			pa	0.412	0.001	< 0.001	0.122
GG	193 (85.0)	270 (87.7)	1.000 (reference)		·				
GA	34 (15.0)	38 (12.3)	0.797 (0.484 - 1.312)	0.372	43GG	11.05 ± 5.86 (n=90)	256.42 ± 59.03	11.47 ± 0.81	31.96 ± 4.30
AA	0 (0.0)	0 (0.0)	NA	NA	43GA	11 /E . E 00 /p 1/)	228.47 ± 50.21	11.85 ± 0.63	33.41 ± 4.61
Dominant (GG vs GA+AA)			0.797 (0.484 - 1.312)	0.372	43GA	11.45 ± 5.99 (n=14)	220.47 ± 50.21	11.05 ± 0.03	33.41 ± 4.01
Recessive (GG+GA vs AA)			NA	NA	₽ ^b	0.813	0.040	0.035	0.135
HWE P	0.223	0.249			-				
PAI-1 9785G>A					9785GG	10.92 ± 5.70 (n=96)	255.41 ± 58.81	11.51 ± 0.82	32.16 ± 4.45
GG	218 (96.0)	286 (92.9)	1.000 (reference)		9785GA	13.25 ± 7.60 (n=8)	218.27 ± 44.69	11.69 ± 0.47	31.85 ± 3.13
GA	9 (4.0)	22 (7.1)	1.849 (0.834 – 4.098)	0.130	ADCOLE	15.25 ± 7.00 (II=0)	210.27 ± 44.09	11.09 ± 0.47	51.03 I 5.15
AA	0 (0.0)	0 (0.0)	NA	NA	P ^b	0.283	0.042	0.407	0.799
Dominant (GG vs GA+AA)			1.849 (0.834 – 4.098) NA	0.130	4405077	40.05 0.40 / 000		44.05 0.50	22.74 4.24
Recessive (GG+GA vs AA) HWE P	0.761	0.516	NA	NA	11053TT	10.25 ± 6.13 (n=28)	230.63 ± 50.86	11.85 ± 0.59	33.71 ± 4.24
PAI-1 11053T>G	0.761	0.516			11053TG	11.08 ± 5.94 (n=49)	248.26 ± 60.02	11.50 ± 0.77	31.40 ± 3.83
Π	65 (28.6)	84 (27.3)	1.000 (reference)						
TG	101 (44.5)	140 (45.5)	1.071 (0.709 – 1.618)	0.745	11053GG	12.07 ± 5.47 (n=27)	279.27 ± 52.81	11.25 ± 0.93	32.02 ± 3.83
GG	61 (26.9)	84 (27.3)	1.067 (0.671 – 1.696)	0.786	pa	0.524	-0.001	0.001	0.012
Dominant (TT vs TG+GG)			1.071 (0.731 - 1.569)	0.725	r.	0.534	<0.001	0.001	0.013
Recessive (TT+TG vs GG)			1.020 (0.693 - 1.501)	0.920	PLT, platelet: PT, prothr	ombin time; aPTT, activated par	tial thromboplastin time	^a One-way analysis of vari	ance test. ^b Independent
HWE P	0.098	0.111			 two-sample t-test. 	in the second			

Coagulation & Thrombosis - RPL

이웃사랑 · 인간존중 · 연구와 탐구

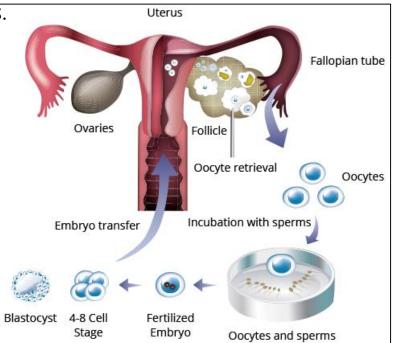
Jeon YJ et al. Thromb Haemos³⁷2013

Article Genetic Polymorphisms in *miR-604A>G*, *miR-938G>A*, *miR-1302-3C>T* and the Risk of Idiopathic Recurrent Pregnancy Loss

Sung-Hwan Cho^{1,†}, Ji-Hyang Kim^{2,†}, Hui-Jeong An^{1,3}, Young-Ran Kim², Eun-Hee Ahn², Jung-Ryeol Lee⁴, Jung-Oh Kim¹, Jung-Jae Ko¹ and Nam-Keun Kim^{1,*}

Table 2. Comparison of microRNA polymorphic genotype frequencies in controls and RPL patients.

Characteristics	Controls n = 227	$PL \ge 2$ n = 388	AOR (95% CI) ^a	v ^b	FDR-p °	$PL \ge 3$ n = 206	AOR (95% CI) a	v ^b	FDR-p ^c					
	n (%)	n (%)		,		n (%)		'		A	В	Expression of	pre-miR-60	4
			n	niR-604A>G							-		**	
AA	73 (32.2)	171 (44.1)	1.000 (reference)			86 (41.7)	1.000 (reference)				e ²⁵⁰]	Ļ	
AG	115 (50.7)	173 (44.6)	0.640 (0.445-0.920)	0.016	0.061	95 (46.1)	0.686 (0.452–1.04)	0.076	0.126	MTHFR 3'UTR 5'-CTGGGAACCCCGCAGCCC-3'	1 200 -		1	-
GG	39 (17.2)	44 (11.3)	0.496 (0.296–0.832)	0.008	0.024	25 (12.1)	0.532 (0.292-0.970)	0.04	0.12		9 150 - 9 100 -			1
Dominant (AA vs. AG + GG)			0.606 (0.429–0.856)	0.005	0.025		0.650 (0.438-0.965)	0.033	0.055	Hsa-miR-604 3'-AGGACTTAAGGCGTCGGA-5'	- 05 -	-		
Recessive (AA + AG vs. GG)			0.621 (0.389-0.992)	0.046	0.138		0.646 (0.374–1.117)	0.118	0.276		8 0 -			
			n	niR-608C>G								pcDNA off-target	604A	604G
CC	48 (21.1)	93 (24.0)	1.000 (reference)			51 (24.8)	1.000 (reference)			6	D			
CG	109 (48.0)	189 (48.7)	0.885 (0.581–1.349)	0.57	0.57	103 (50.0)	0.867 (0.536-1.401)	0.559	0.559	C 3'UTR of MTHFR (Ishikawa)	D	3'UTR of MT	HFR (SNU-	539)
GG	70 (30.8)	106 (27.3)	0.789 (0.497-1.252)	0.314	0.471	52 (25.2)	0.702 (0.411-1.199)	0.195	0.292			T		
Dominant (CC vs. CG + GG)			0.850 (0.572-1.261)	0.419	0.419		0.805 (0.513-1.263)	0.345	0.345		Relative 1 - 1 - 20 - 20			Ŧ
Recessive (CC + CG vs. GG)			0.847 (0.591–1.214)	0.366	0.549		0.751 (0.492–1.146)	0.184	0.276		2 .5 0.5 -			
			I	miR-631I/D							=			
п	204 (89.9)	357 (92.0)	1.000 (reference)			193 (93.7)	1.000 (reference)			pcDNA off-target 604A 604G	0 7	pcDNA off-target	604A	604G
ID	23 (10.1)	31 (8.0)	0.778 (0.441–1.372)	0.385	0.481	13 (6.3)	0.577 (0.283–1.178)	0.131	0.163			peore on-target	0040	0040
DD	0 (0.0)	0 (0.0)	N/A	N/A	N/A	0 (0.0)	N/A	N/A	N/A	E 3'UTR of MTHFR (Caco-2)	F	3'UTR of MTI	IFR (KGN)	
Dominant (II vs. ID + DD)			0.778 (0.441-1.372)	0.385	0.419		0.577 (0.283–1.178)	0.131	0.163	15	<u>2</u>	**		
Recessive (II + ID vs. DD)			N/A	N/A	N/A		N/A	N/A	N/A		Relative ferase activity			
			n	niR-938G>A							lati		-	Ť
GG	215 (94.7)	380 (97.9)	1.000 (reference)			204 (99.0)	1.000 (reference)			a <u>1</u> 0.5 -	2 .5 -			
GA	12 (5.3)	8 (2.1)	0.375 (0.151–0.933)	0.035	0.061	2 (1.0)	0.179 (0.040-0.811)	0.026	0.087		luci			
AA	0 (0.0)	0 (0.0)	N/A	N/A	N/A	0 (0.0)	N/A	N/A	N/A	0	0 -		6044	604G
Dominant (CC vs. CT + TT)			0.375 (0.151–0.933)	0.035	0.061		0.179 (0.040-0.811)	0.026	0.055	pcDNA off-target 604A 604G		pcDNA off-target	604A	6046
Recessive (CC + CT vs. TT)			N/A	N/A	N/A		N/A	N/A	N/A					


Non-coding RNA - RPL

What is Recurrent Implantation Failure (RIF)? 다시 의과학대학교 차병원

•RIF be defined as the failure to achieve a clinical pregnancy after transfer of at least 4 good-quality embryos in a minimum of two or three (fresh or frozen) IVF cycles in a woman.

- RIF may simply be defined as two or more continuous implantation failures
- •Based on the definition proposed above, RIF is primarily due to uterine factors. •Proportion of cases due to gamete or embryo factors.
 - Oocyte quality
 - Sperm quality
 - Parental chromosomal anomalies
- •Uterine factors
 - Congenital uterine anomalies
 - Hydrosalpinx
 - Immunological factors
 - Thrombotic conditions

Genetic factors

COUGHLAN, Carol, et al. Recurrent implantation failure: definition and 이웃사랑 · 인간존중 · 연구도 함부 · *Reprod. Biomed. online*, 2014, 28.1: 14-38. 39

Genetic Variation of Methylenetetrahydrofolate Reductase (*MTHFR*) and Thymidylate Synthase (*TS*) Genes Is Associated with Idiopathic Recurrent Implantation Failure

Youngsok Choi^{1,2}°, Jung Oh Kim^{1,3}°, Sung Han Shim^{1,2}, Yubin Lee², Ji Hyang Kim⁴, Young Joo Jeon^{1,3}, Jung Jae Ko¹, Woo Sik Lee²*, Nam Keun Kim^{1,3}*

Table 2. Genotype frequencies of one-carbon metabolism-related gene polymorphisms between controls and RIF patients.

Genotype	Controls	RIF patients	Reference allele	Models	AOR (95% CI)	P	FDR-P
MTHFR 677C>T	n = 125	n = 120					
CC	46 (36.8)	35 (29.2)	677C	Additive	1.394 (0.957-2.030)	0.083	0.332
СТ	64 (51.2)	60 (50.0)	677C	Dominant	1.384 (0.807-2.375)	0.238	0.476
Π	15 (12.0)	25 (20.8)	677C	Recessive	1.834 (0.908-3.705)	0.091	0.364
HWE <i>P</i>	0.308	0.939					
MTHFR 1298A>C							
AA	79 (63.2)	78 (65.0)	1298A	Additive	1.005 (0.631-1.600)	0.984	0.984
AC	43 (34.4)	38 (31.7)	1298A	Dominant	0.977 (0.576-1.657)	0.931	0.931
CC	3 (2.4)	4 (3.3)	1298A	Recessive	1.273 (0.277-5.851)	0.756	0.907
HWE <i>P</i>	0.306	0.810					
TSER 2R/3R							
3R3R	82 (65.6)	81 (67.5)	3R	Additive	0.958 (0.615-1.493)	0.850	0.984
2R3R	37 (29.6)	34 (28.3)	3R	Dominant	0.953 (0.558-1.628)	0.860	0.931
2R2R	6 (4.8)	5 (4.2)	3R	Recessive	0.930 (0.275-3.143)	0.907	0.907
HWE <i>P</i>	0.497	0.811					
TS 1494 Obp/6bp							
0bp0bp	70 (56.0)	59 (49.2)	14940bp	Additive	1.242 (0.835-1.848)	0.285	0.570
0bp6bp	45 (36.0)	51 (42.5)	14940bp	Dominant	1.391 (0.836-2.316)	0.204	0.476
6bp6bp	10 (8.0)	10 (8.3)	14940bp	Recessive	1.091 (0.435-2.739)	0.852	0.907
HWE P	0.471	0.826					

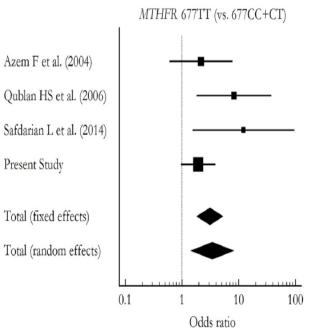


Fig 1. A meta-analysis of *MTHFR* 677C>T in RIF. A meta-analysis of the association between carriers of the T allele (individuals with TT genotype) in the *MTHFR* 677C>T polymorphism and recurrent implantation failure (RIF). The fixed and random effects models were used to calculate the pooled weighted odds ratios (ORs).

One-carbon metabolism - RIF

Association of *miR-27a*A>G, *miR-423*C>a, *miR-449b*A>G, and *miR-604*A>G Polymorphisms with Risk of Recurrent Implantation Failure

Jung Oh Kim¹ · Eun Hee Ahn² · Jung Hyun Sakong¹ · Hui Jeong An¹ · Han Sung Park¹ · Young Ran Kim² Jung Ryeol Lee³ · Woo Sik Lee⁴ · Nam Keun Kim¹

Sakong JH et al. Reprod Sci. 2019

enotypes	Controls (n = 219)	$\begin{array}{l} RIF \geq 2 \\ (n = 120) \end{array}$		$RIF \ge 3$ $(n = 107)$	AOR (95% CI) P FDR- P^a	$RIF \ge 4$ $(n = 75)$	AOR (95% CI) P FDR- P ²						
<i>iR-27a</i> rs895819 A>	>G												
AA	72 (32.9)	59 (49.2)	1.000 (reference)	53 (49.5)	1.000 (reference)	39 (52.0)	1.000 (reference)						
AG	117 (53.4)	47 (39.2)	0.480 (0.296-0.781) 0.003 0.012	42 (39.3)	0.477 (0.288-0.789) 0.004 0.016	25 (33.3)	0.383 (0.213-0.689) 0.001 0.004						
GG	30 (13.7)	14 (11.7)	0.564 (0.273-1.164) 0.121 0.242	12 (11.2)	0.535 (0.250-1.147) 0.108 0.159	11 (14.7)	0.670 (0.302-1.486) 0.325 0.433					7,980	
ominant (AA vs. AC GG)	G+		0.499 (0.316-0.789) 0.003 0.012		0.491 (0.305-0.789) 0.003 0.012		0.444 (0.260–0.759) 0.003 0.012					7,980	
ecessive (AA+AG v	vs.		0.829 (0.420-1.636) 0.588 0.588		0.790 (0.386-1.618) 0.519 0.519		1.078 (0.510-2.281) 0.844 0.844	0.000					
GG)								9.000			_		
<i>iR-423</i> rs6505162 C> CC	>A 142 (64.8)	70 (58.3)	1,000 (775-777-7)	63 (58.9)	1,000 (46 (61.3)	1,000 (
CA	64 (29.2)	70 (58.3) 45 (37.5)	1.000 (reference) 1.464 (0.906-2.367) 0.119 0.119		1.000 (reference) 1.501 (0.914-2.465) 0.109 0.145		1.000 (reference) 1.303 (0.737–2.304) 0.363 0.363						
AA	13 (5.9)	45 (37.5) 5 (4.2)	0.792 (0.271–2.316) 0.670 0.670		0.536 (0.147–1.952) 0.344 0.344		0.735 (0.200-2.702) 0.643 0.643	7.500 -			_		
ominant (CC vs. CA	1 A A A A A A A A A A A A A A A A A A A	5 (4.2)	1.356 (0.856-2.149) 0.195 0.195	5 (2.8)	1.342 (0.831–2.169) 0.229 0.229		1.211 (0.701–2.093) 0.493 0.493	7.500			_		
AA)	4+		1.556 (0.856–2.149) 0.195 0.195		1.342 (0.831–2.169) 0.229 0.229		1.211 (0.701–2.093) 0.493 0.493				_		
Recessive (CC+CA v	/s.		0.707 (0.245-2.036) 0.520 0.588		0.472 (0.131-1.696) 0.250 0.333		0.679 (0.188-2.458) 0.556 0.741						
AA)								6.000 -			_		
niR-449b rs1006113. A>G	33							0.000			_		
AA	120 (54.8)	53 (44.2)	1.000 (reference)	45 (42.1)	1.000 (reference)	30 (40.0)	1.000 (reference)				_		
AG	86 (39.3)	57 (47.5)	1.536 (0.961-2.454) 0.073 0.109	52 (48.6)	1.667 (1.021-2.722) 0.041 0.082	39 (52.0)	1.903 (1.088–3.329) 0.024 0.048			3.138			
GG	13 (5.9)	10 (8.3)	1.721 (0.708-4.185) 0.231 0.308	10 (9.3)	2.040 (0.832-4.998) 0.119 0.159	6 (8.0)	1.850 (0.644-5.313) 0.253 0.433	4.500					
ominant (AA vs. AC	G+		1.584 (1.008-2.490) 0.046 0.061		1.747 (1.088-2.803) 0.021 0.042		1.932 (1.122–3.327) 0.018 0.036	41000					
GG)													
ecessive (AA+AG v GG)	vs.		1.477 (0.626-3.483) 0.373 0.588		1.692 (0.715-4.006) 0.232 0.333		1.439 (0.525–3.949) 0.479 0.741						
miR-604 rs2368393	3							3.000 -					
A>G													
AA	71 (32.4)	53 (44.2)	1.000 (reference)	45 (42.1)	1.000 (reference)	31 (41.3)	1.000 (reference)						
AG	110 (50.2)	54 (45.0)	0.650 (0.400-1.056) 0.082 0.109		0.695 (0.419-1.154) 0.160 0.160		0.678 (0.380-1.207) 0.186 0.248		1.000		0.974		
GG	38 (17.4)	13 (10.9)	0.415 (0.196-0.878) 0.021 0.084	13 (12.1)	0.483 (0.226-1.033) 0.061 0.159	11 (14.7)	0.590 (0.259–1.346) 0.210 0.433	1.500 -					al
ominant (AA vs. AC GG)	G+		0.596 (0.377–0.945) 0.028 0.056		0.648 (0.402-1.047) 0.076 0.101		0.667 (0.388-1.148) 0.144 0.192						
ecessive (AA+AG v	vs.		0.544 (0.274-1.081) 0.082 0.328		0.613 (0.307-1.224) 0.165 0.333		0.769 (0.366-1.616) 0.488 0.741						
GG)												aPTT	>29.48

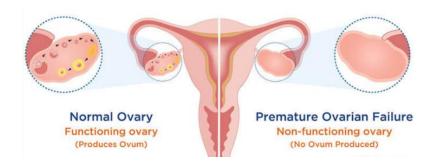
Note: For AOR was adjusted by age of participants. RIF, recurrent implantation failure; AOR, adjusted odds ratio; CI, confidence interval ^a FDR-P, false discovery rate, adjusted P value

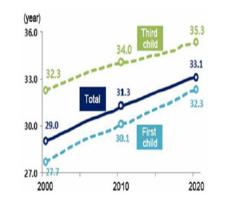
activated Partial Thromboplastin Time (aPTT)

amenorrhea before 40 years old

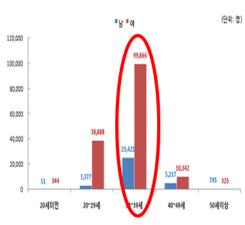
What is primary ovarian insufficiency (POI)?

- 2. Elevated gonadotropin levels: serum FSH >40 IU/L Recently proposed guideline: serum FSH >30 IU/L
- 3. Prevalence: approximately 1% of women
- 4. Majority of cases: post-pubertal POI onset


Primary Ovarian Failure / Insufficiency


Cessation of normal ovarian function by

5. 90% of post-pubertal POI


1.

at the time of diagnosis: nulliparous (without menstruation)

Average age of mothers giving birth to child (Birth Statistics in 2020)

Treatment status of Infertility in each age/gender in 2010 (HEALTH INSURANCE REVIEW & ASSESSMENT SERVICE, 2011)

Association of methylenetetrahydrofolate reductase (*MTHFR* 677C>T) and thymidylate synthase (*TSER* and *TS* 1494del6) polymorphisms with premature ovarian failure in Korean women

HyungChul Rah, DVM, PhD,^{1,2} Young Joo Jeon, MS,^{1,2} Youngsok Choi, PhD,^{1,3} Sung Han Shim, PhD,^{1,3} Tae Ki Yoon, MD, PhD,³ Dong Hee Choi, MD, PhD,⁴ Sun Hee Cha, MD, PhD,⁴ and Nam Keun Kim, PhD^{1,2}

TABLE 2. Genotype frequencies of the MTHFR 677C>T, TSER, and TS 1494del6 polymorphisms in Korean POF patients and controls

Genotypes	Controls (n = 236), %	POF patients ($n = 136$), %	OR (95% CI)	P	FDR
MTHFR 677C>T					
CC	74 (31.4)	24 (17.7)	1.000 (reference)		
CT	122 (51.7)	89 (65.4)	2.249 (1.317-3.843)	0.003	0.009
TT	40 (16.9)	23 (16.9)	1.773 (0.890-3.533)	0.102	0.306
Dominant (CC vs $CT + TT$)	162 (68.6)	112 (82.3)	2.132 (1.268-3.585)	0.004	0.012
T allele	0.428	0.496			
HWE p	0.391	< 0.001			
TSER					
3R3R ^a	156 (66.1)	94 (69.1)	1.000 (reference)		
2R3R	72 (30.5)	39 (28.7)	0.899 (0.565-1.433)	0.654	0.654
2R2R	8 (3.4)	3 (2.2)	0.622 (0.161-2.405)	0.751^{b}	0.751
Dominant (3R3R vs 2R+) ^c	80 (33.9)	42 (30.9)	0.871 (0.554-1.370)	0.551	0.551
2R allele	0.186	0.165			
HWE <i>p</i>	0.930	0.654			
TS 1494del6					
del6/del6	125 (53.0)	78 (57.4)	1.000 (reference)		
del6/ins6	99 (41.9)	52 (38.2)	0.842 (0.543-1.306)	0.442	0.654
ins6/ins6	12 (5.1)	6 (4.4)	0.801 (0.289-2.223)	0.670	0.751
Dominant (del6/del6 vs del6/ins6 + ins6/ins6)	111 (47.0)	58 (42.6)	0.837 (0.547-1.281)	0.413	0.551
ins6 allele	0.261	0.235			
HWE p	0.174	0.466			

MTHFR, methylenetetrahydrofolate reductase; *TSER*, *TS* enhancer region; *TS*, thymidylate synthase; POF, premature ovarian failure; OR, odds ratio; FDR, false discovery rate; HWE *p*, Hardy-Weinberg equilibrium *p* value.

^aOne 3R4R included.

^bP value by Fisher's exact test; otherwise, p value by χ^2 test.

^c2R+: TSER 2R2R and 2R3R genotypes.

TABLE 3. Combination analysis	of the MTHFR 677C>T, TSER, and TS 1494del6 p	polymorphisms in Korean POF	patients and controls

Genotypes	Controls (n = 236), $\%$	POF patients ($n = 136$), %	OR (95% CI)	Р	FDR
MTHFR 677/TSER					
CC/3R3R	50 (21.2)	16 (11.8)	1.000 (reference)		
CC/2R+	25 (10.6)	8 (5.9)	1.000 (0.377-2.652)	1.000	1.000
CT + TT/3R3R	106 (44.9)	78 (57.3)	2.300 (1.219-4.337)	0.009	0.014
CT + TT/2R+	55 (23.3)	34 (25.0)	1.932 (0.953-3.918)	0.066	0.099
MTHFR 677/TS 1494del6					
CC/del6/del6	47 (19.9)	12 (8.8)	1.000 (reference)		
CC/del6/ins6 + ins6/ins6	28 (11.9)	12 (8.8)	1.679 (0.664-4.242)	0.271	0.713
CT + TT/del6/del6	78 (33.1)	66 (48.6)	3.314 (1.623-6.767)	< 0.001	0.003
CT + TT/del6/ins6 + ins6/ins6	83 (35.1)	46 (33.8)	2.171 (1.047-4.501)	0.035	0.099
TSER/TS 1494del6			· · · · · ·		
3R3R/del6/del6	101 (42.8)	65 (47.8)	1.000 (reference)		
3R3R/del6/ins6 + ins6/ins6	55 (23.3)	29 (21.3)	0.819 (0.474-1.416)	0.475	0.713
2R+/del6/del6	24 (10.2)	13 (9.6)	0.842 (0.400-1.770)	0.649	0.649
2R+/del6/ins6 + ins6/ins6	56 (23.7)	29 (21.3)	0.805 (0.466-1.389)	0.435	0.435

MTHFR, methylenetetrahydrofolate reductase; *TSER*, *TS* enhancer region; *TS*, thymidylate synthase; POF, premature ovarian failure; OR, odds ratio; FDR, false discovery rate.

One carbon metabolism - POI

Vascular endothelial growth factor gene polymorphisms in Korean patients with premature ovarian failure

Young Joo Jeon^a, Youngsok Choi^b, Sung Han Shim^b, Yi Seul Choi^a, Jung Jae Ko^a, Tae Ki Yoon^c, Sun Hee Cha^d, Nam Keun Kim^{a,*}

Jeon YJ, et al.. Eur J Obstet Gynecol Reprod Biol. 2011

4			
۱h	lê.	1	
110	n.		

Frequencies of VEGF -2578C>A, -1154G>A, -634G>C, and 936C>T haplotypes in patients with POF and in control subjects.

Table 1					requencies of vicor -	2010C/n, -11040/n, -0040	requeries of vicor =2570c/m, =11540/m, =0540/c, and 550c/1 haplotypes in patients with rol and in control subjects.									
	GF -2578C>A, -1154G>A, -634G>	C, and 936C>T in premature ovarian failur	e (POF) patients and control subjects.		Characteristics	Overall (n=255)	Controls (n=120)	POF patients (n = 135)	OR (95% Cl)	P ^a						
Characteristics	Controls (n = 120)	POF patients (n=135)	OR (95% CI)	P ^a	VEGF -2578/-1154/											
VECE 2570C A	, , ,	• • •	, ,		- C-G-C-C	0.3974	0.4059	0.3907	0.922 (0.646-1.315)	0.654						
VEGF -2578C>A	()				C-G-G-C	0.2328	0.2747	0.1931	0.629 (0.416-0.952)	0.028						
CC	68 (56.7)	64 (47.4)	1.000 (Ref.)		A-A-G-C	0.1263	0.1087	0.1477	1.431 (0.845-2.426)	0.181						
CA	45 (37.5)	63 (46.7)	1.488 (0.891-2.484)	0.128	A-G-G-C	0.0593	0.0450	0.0718	1.576 (0.734-3.383)	0.240						
AA	7 (5.8)	8 (5.9)	1.214 (0.416-3.542)	0.722	C-G-G-T	0.0454	0.0277	0.0620	2.237 (0.911-5.490)	0.072						
CA+AA	52 (43.3)	71 (52.6)	1.451 (0.885-2.379)	0.140	A-G-G-T	0.0431	0.0654	0.0249	0.373 (0.151-0.922)	0.027						
VEGF 1154G>A	()				C-G-C-T	0.0407	0.0218	0.0575	2.961 (1.068-8.208)	0.029						
	90 (75.0)	86 (63.7)	1.000 (Ref.)		A-A-G-T	0.0389	0.0214	0.0482	2.377 (0.835-6.770)	0.095						
GG		, ,		0.010	VEGF -2578/-1154/	936										
GA	23 (19.2)	44 (32.6)	2.002 (1.116-3.592)	0.019	C-G-T	0.0856	0.0505	0.1174	2.555 (1.284-5.082)	0.006						
AA	7 (5.8)	5 (3.7)	0.746 (0.228-2.446)	0.629	A-G-T	0.0433	0.0643	0.0264	0.399 (0.160-0.997)	0.042						
GA+AA	30 (25.0)	49 (36.3)	1.709 (0.994-2.940)	0.052	VEGF -2578/-634/9	36			, ,							
VEGF -634G>C					C-G-C	0.2394	0.2828	0.1978	0.618 (0.410-0.932)	0.021						
GG	38 (31.7)	39 (28.9)	1.000 (Ref.)		C-C-T	0.0408	0.0214	0.0578	2.961 (1.068-8.208)	0.029						
GC	59 (49.2)	71 (52.6)	1.173 (0.667-2.063)	0.581	VEGF -1154/-634/9		0.0211	0.0570		0.025						
СС	23 (19.1)	25 (18.5)	1.059 (0.515-2.179)	0.876	G-C-T	0.0406	0.0212	0.0578	2.961 (1.068-8.208)	0.029						
GC+CC	82 (68.3)	96 (71.1)	1.141 (0.668-1.948)	0.630	VEGF -2578/-1154											
VEGF 936C>T	02 (00.2)			0.000	A-A	0.1653	0.1312	0.1959	1.647 (1.017-2.667)	0.041						
CC	87 (72.5)	89 (65.9)	1.000 (Ref.)		VEGF -2578/936											
CT	31 (25.8)	40 (29.6)	1.261 (0.724-2.196)	0.411	C-C	0.6400	0.6936	0.5902	0.639 (0.443-0.921)	0.016						
					C-T	0.0894	0.0606	0.1172	2.017 (1.064-3.824)	0.029						
TT	2 (1.7)	6 (4.4)	2.933 (0.576-14.934)	0.280 ^b	VEGF -634/936				, ,							
CT+TT	33 (27.5)	46 (34.1)	1.363 (0.797-2.329)	0.257	<u>C-T</u>	0.0406	0.0215	0.0577	2.961 (1.068-8.028)	0.029						
a of the second se																

Table 3

^a Chi-square test.

^b Fisher's exact test.

Note: Haplotypes for VEGF -2578/-1154/-634, -2578/-634, -1154/-634, and -1154/936 were not statistically significant (P>0.05).

^a Permutation test. Overall haplotype frequencies below 0.03 were excluded. In cases where the expected value was <5, results were confirmed by Fisher's exact test.

Association of five common polymorphisms in the plasminogen activator inhibitor-1 gene with primary ovarian insufficiency

Young Joo Jeon, M.S.,^a Young Ran Kim, M.D.,^b Bo Eun Lee, M.S.,^a Sun Hee Cha, M.D., Ph.D.,^b Myoung-Jin Moon, M.D., Ph.D., ^b Doyeun Oh, M.D., Ph.D., ^c Woo Sik Lee, M.D., Ph.D., ^d and Nam Keun Kim, Ph.D.^a

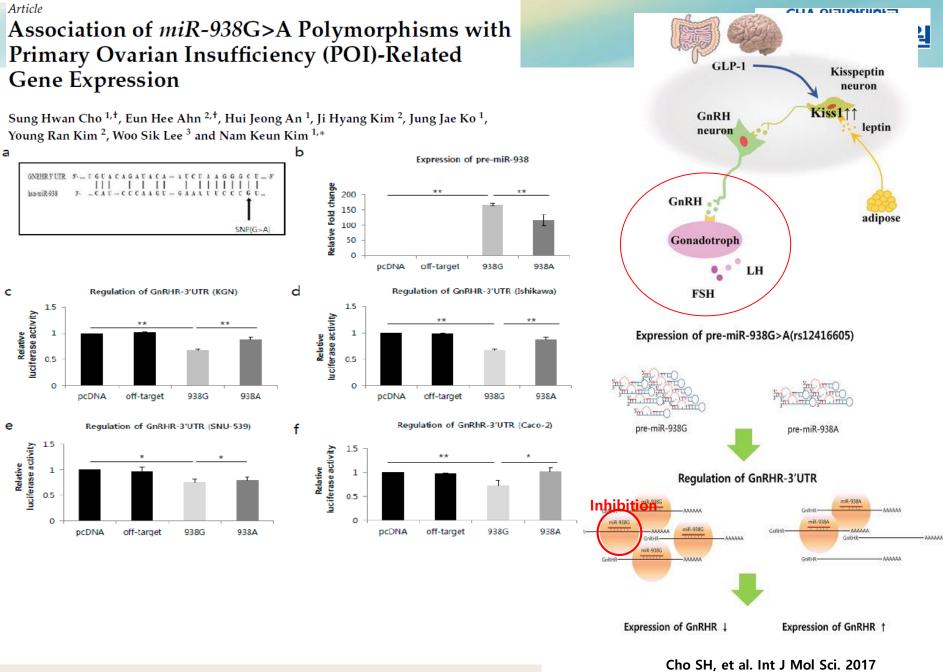

Jeon et al. Fertil Steril 2014

TABLE 2						TABLE 3						
Genotype frequencies of	PAI-1 polymorphisms in POI pa	atients and controls.										
Characteristic	Controls (n = 227), n (%)	POI patients (n = 137), n (%)	OR (95% CI)	P value ^a	FDR-P	Combination ana	lysis of PAI-1	polymorphisms in POI patients	and controls.			
PAI-1 -844G>A GG GA	72 (31.7) 120 (52.9)	58 (42.3) 58 (42.3)	1.000 (reference) 0.600 (0.376–0.957)	.033	.083	Combined genoty	rpes	Controls (n = 227), n (%)	POI patients (n = 137), n (%)	OR (95% CI)	P value ^a	FDR-P
AA Dominant (GG vs. GA+		21 (15.3)	0.745 (0.392–1.416) 0.633 (0.408–0.982)	.420 .043	.108	-844G>A	9785G>A					
Recessive (GG+GA vs. / A allele frequency HWE P PAI-1 –675 4G/5G	AA) 0.419 .194	0.365 .310	0.993 (0.551–1.788)	1.000	1.000	GG+GA GG+GA	GG GA+AA	184 (81.1) 8 (3.5)	94 (68.6) 22 (16.1)	1.000 (reference) 5.383 (2.308–12.553)	<.001	<.001
PAI-1 -675 4G/5G 5G5G 4G5G 4G4G	39 (17.2) 117 (51.5) 71 (31.3)	32 (23.4) 59 (43.1) 46 (33.6)	1.000 (reference) 0.615 (0.350–1.079) 0.790 (0.435–1.434)	.109 .450	.182	AA AA	GG GA+AA	34 (15.0) 1 (0.4)	17 (12.4) 4 (2.9)	0.979 (0.520–1.843) 7.830 (0.862–71.082)	1.000	1.000
Dominant (5G5G vs. 40 Recessive (5G5G+4G50	G5G+4G4G) G vs. 4G4G)		0.681 (0.403–1.151) 1.111 (0.707–1.746)	.172	.215	4G/5G	9785G>A		1 (2.3)		.050	.075
4G allele frequency HWE P PAI-1 43G>A	0.570 .436	0.551 .129				5G5G+4G5G 5G5G+4G5G	GG GA+AA	147 (64.8) 9 (4.0)	73 (53.3) 18 (13.1)	1.000 (reference) 4.027 (1.725–9.405)	.001	.002
GG GA AA	193 (85.0) 34 (15.0) 0 (0.0)	120 (87.6) 15 (10.9) 2 (1.5)	1.000 (reference) 0.710 (0.371–1.358) 8.029 (0.382–168.796)	.343	.343 .328	4G4G	GG	71 (31.3)	38 (27.7)	1.078 (0.664–1.748)	.805	.805
Dominant (GG vs. GA+	HAA)	2 (1.5)	0.804 (0.430-1.503)	.536	.536	4G4G	GA+AA	0 (0.0)	8 (5.8)	34.116 (1.941–599.639)	<.001	.001
Recessive (GG+GA vs.) A allele frequency HWE P	AA) 0.075 .223	0.069 .076	8.395 (0.400–176.298)	.141	.353	43G>A GG	9785G>A GG	185 (81.5)	98 (71.5)	1.000 (reference)		
<i>PAI-1</i> 9785G>A GG GA	218 (96.0) 9 (4.0)	111 (81.0) 24 (17.5)	1.000 (reference) 5.237 (2.354–11.652)	<.001	< .001	GG GA+AA	GA+AA GG	8 (3.5)	22 (16.1) 12 (0.5)	5.191 (2.229–12.093) 0.744 (0.374–1.478)	<.001 .502	<.001 .502
AA Dominant (GG vs. GA+ Recessive (GG+GA vs.)	0 (0.0) +AA)	2 (1.5)	9.798 (0.466–205.999) 5.674 (2.570–12.525) 8.395 (0.400–176.298)	.116 <.001 .141	.328 < .001 .353	GA+AA	GA+AA	33 (14.5) 1 (0.4)	13 (9.5) 4 (2.9)	0.744 (0.374–1.478) 7.551 (0.832–68.523)	.502	.502
A allele frequency HWE P	0.020 .761	0.102 .596	0.555 (0.400-176.298)	.141	.553	9785G>A GG	11053T>G TT+TG	157 (69.2)	85 (62.0)	1.000 (reference)		
<i>PAI-1</i> 11053T>G TT TG	65 (28.6) 101 (44.5)	50 (36.5) 56 (40.9)	1.000 (reference) 0.721 (0.440–1.180)	.210	.263	GG	GG	61 (26.9)	26 (19.0)	0.787 (0.464–1.337)	.428	.428
GG Dominant (TT vs. TG+G	61 (26.9) GG)	31 (22.6)	0.661 (0.374–1.166) 0.698 (0.444–1.097)	.197 .131	.328 .215	GA+AA GA+AA	TT+TG GG	9 (4.0) 0 (0.0)	21 (15.3) 5 (3.6)	4.310 (1.890–9.829) 20.263 (1.106–371.122)	<.001 .006	.002 .009
Recessive (TT+TG vs. G G allele frequency HWE P	iG) 0.491 .098	0.431 .051	0.796 (0.484–1.307)	.386	.643	Note: Nonsignificant co			5 (5.0)	20.203 (1.100-371.122)	.000	.005
Note: FDR-P = false-positive discov ^a Fisher's exact test.	overy rate-corrected; HWE = Hardy-Weinbe	erg equilibrium.				^a Fisher's exact test.						
Jeon. PAI-1 and primary ovarian ins	sufficiency. Fertil Steril 2014.					Jeon. PAI-1 and primary	v ovarian insufficienc	ry. Fertil Steril 2014.				

Haplotype analysis of *PAI-1* polymorphisms in POI patients and controls.

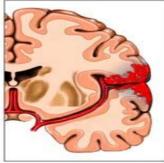
Haplotype	Controls $(2n = 454)$, $(n \%)$	POI patients ($2n = 274$), n (%)	OR (95% CI)	P value ^a	FDR-P
PAI-1 -675/9785		× ,			
5G-G	186 (41.0)	116 (42.3)	1.058 (0.780–1.434)	.756	.756
5G-A	9 (2.0)	7 (2.6)	1.296 (0.477–3.522)	.611	.756
4G-G	259 (57.0)	130 (47.4)	0.680 (0.503-0.919)	.014	.028
4G-A	0 (0.0)	21 (7.7)	77.095 (4.647-1278.942)	<.001	<.001

Coagulation & Thrombosis - POI

Non-coding RNA - POI

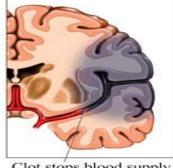
2017

이웃사랑 · 인간존중 · 연구와 탐구


46

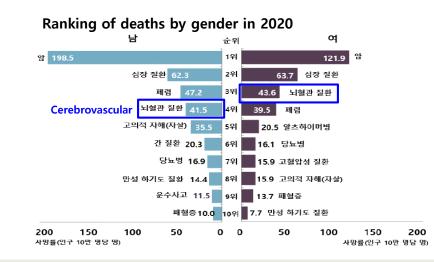
Ischemic stroke

Vascular rupture : hemorrhagic stroke


Hemorrhagic Stroke

Hemorrhage/blood leaks into brain tissue

Vascular occlusion : ischemic stroke


Ischemic Stroke

Clot stops blood supply to an area of the brain

Insull W Jr, Am J Med 2009;122(1 Suppl):S3-S14; Bradberry JC et al, J Am Pharm Assoc 2004;44:S37-S45

Ranking of deaths in 2020

		(단위: 인구	10만 명당 명)
순위	사망원인	사망물	'19년 순위 대비
1	악성신생물(암)	160.1	-
2	심장 질환	63.0	-
3	폐렴	43.3	-
4	뇌혈관 질환	42.6	-
5	고의적 자해(자살)	25.7	-
6	당뇨병	16.5	-
7	알츠하이머병	14.7	-
8	간 질환	13.6	-
9	고혈압성 질환	11.9	(+1)
10	패혈증	11.9	(+1)

One-carbon metabolism – Stroke

Homozygous C677T mutation in the MTHFR gene as an independent risk factor for multiple small-artery occlusions

B.O. Choi^{a,1}, N.K. Kim^b, S.H. Kim^b, M.S. Kang^b, S. Lee^b, J.Y. Ahn^b, O.J. Kim^a, S. Kim^b, D. Oh^{b,*}

Table 3

Adjusted odds ratio assessment of the MTHFR 677TT genotype for subtypes of ischemic stroke compared to both no mutation, such as the CC (normal) genotype, and non-homozygous mutations including the CC and the CT (heterozygous) genotypes

MTHFR	Controls $(n=198)$	Total patients $(n=195)$	Large-artery* $(n=55)$	Small-artery** $(n = 72)$	Cardioembolism $(n=41)$	Other etiology $(n=6)$	Unknown $(n=21)$
677 CC	73 (36.9)	62 (31.8)	20 (36.4)	20 (27.8)	12 (29.3)	2 (33.3)	8 (38.1)
677 CT	100 (50.5)	97 (49.7)	30 (54.5)	32 (44.4)	22 (53.6)	3 (50.0)	10 (47.6)
677 TT	25 (12.6)	36 (18.5)	5 (9.1)	20 (27.8)	7 (17.1)	1 (16.7)	3 (14.3)
AOR (CI),***	1.00	1.06 (0.49-2.29)	1.29 (0.31-5.34)	2.92 (1.01-8.48)	3.60 (0.80-16.26)	0.48 (0.02-11.35)	4.41 (0.63-31.04)
TT vs. CC							
AOR (CI),***	1.00	0.99 (0.53-1.86)	0.91 (0.28-2.97)	2.85 (1.24-6.54)	2.18 (0.73-6.57)	1.77 (0.16-20.26)	4.18 (0.80-21.76)
TT vs. CC/CT							

* Large-artery atherosclerosis.

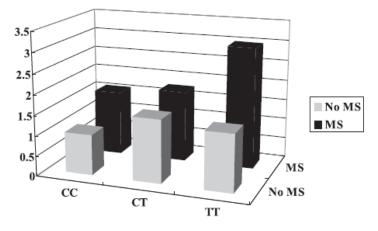
** Small-artery occlusion.

*** Adjusted odds ratio and 95% confidence intervals, adjusted for age, sex, hypertension, diabetes mellitus, and smoking.

Choi B O. et al. Thromb Res. 2003

Gene–environment interactions between methylenetetrahydrofolate reductase (*MTHFR*) 677C>T and metabolic syndrome for the prevalence of ischemic stroke in Koreans

Ok Joon Kim^{a,b,1}, Seung Ho Hong^{c,1}, Young Joo Jeon^b, Seung Hun Oh^a, Hyun Sook Kim^a, Young Seok Park^d, Eo Jin Kim^e, Nam Keun Kim^{b,*} OJ Kim et al, Neurosci, Lett, 2012


Table 2

Prevalence of metabolic syndrome in ischemic stroke patients and controls and its association with ischemic stroke, including specific subtypes.

	Prevalence of metabolic syndrome (%)	COR (95% CI)	Р	AOR ^a (95% CI)	Р
Total stroke	243/404 (60.2)	1.415 (1.015-1.973)	0.040	1.420 (1.017-1.982)	0.040
SAO	79/123 (64.2)	1.683 (1.068-2.653)	0.024	1.707 (1.081-2.695)	0.022
LAO	103/160 (64.4)	1.694 (1.114-2.576)	0.013	1.661 (1.089-2.534)	0.019
CE	20/50 (40.0)	0.625 (0.334-1.168)	0.139	0.580 (0.306-1.101)	0.096
UD	41/71 (57.8)	1.281 (0.746-2.201)	0.369	1.281 (0.746-2.202)	0.370
Control	112/217 (51.6)				

Abbreviations: COR, crude odds ratio; CI, confidence interval; AOR, adjusted odds ratio; SAO, small artery occlusion; LAO, large artery occlusion; CE, cardioembolism; UD, undetermined causes.

^a The adjusted odds ratio on the basis of risk factors, such as age and gender.

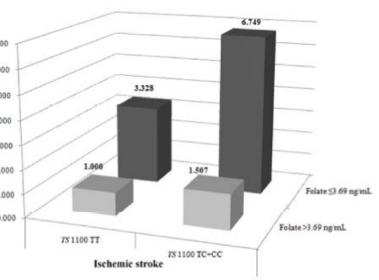
	CC	CT	ТТ
No MS	1.000 (reference)	1.559 (0.894 - 2.720)	1.418 (0.643 - 3.126)
MS	1.602 (0.885 - 2.902)	1.772 (1.053 - 2.983)	3.001 (1.487 - 6.057)

*The adjusted odds ratio on the basis of risk factors, such as age and gender.

One-carbon metabolism – Stroke

Article

The 3'-UTR Polymorphisms in the Thymidylate Synthase (TS) Gene Associated with the Risk of Ischemic Stroke and Silent Brain Infarction


Jung Oh Kim^{1,2}, Han Sung Park², Eun Ju Ko², Jung Hoon Sung³, Jinkwon Kim³, Seung Hun Oh³, Ok Joon Kim^{3,*} and Nam Keun Kim^{2,*}

JO Kim et al. J. Pers. Med. 2021

Table 2. Genotype frequencies of *TS* gene polymorphisms in control subjects, ischemic stroke patients, and silent brain infarction patients.

Genotypes	Controls $(n = 409)$	Stroke $(n = 507)$	AOR (95% CI) *	P †	P‡	SBI $(n = 383)$	AOR (95% CI) *	P †	P‡	-
TS 1100 T>C										1
TT	218 (53.3)	215 (42.4)	1.000 (reference)			176 (45.9)				6
TC	165 (40.3)	235 (46.4)	1.486 (1.115-1.980)	0.007	0.011	173 (45.2)	1.397 (0.961-2.031)	0.080	0.120	
CC	26 (6.4)	57 (11.2)	2.151 (1.275-3.628)	0.004	0.006	34 (8.9)	1.740 (0.879-3.443)	0.112	0.168	
TT vs. TC+CC			1.576 (1.197-2.074)	0.001	0.002		1.443 (1.009-2.063)	0.045	0.068	
TT+TC vs. CC			1.758 (1.064-2.905)	0.028	0.042		1.489 (0.783-2.833)	0.225	0.338	7.00
HWE P	0.480	0.547				0.354				
TS 1170 A>G										6.00
AA	190 (46.5)	320 (63.1)	1.000 (reference)			316 (82.5)				
AG	184 (45.0)	170 (33.5)	0.505 (0.377-0.676)	< 0.0001	0.0003	61 (15.9)	0.198 (0.127-0.309)	< 0.0001	0.0003	
GG	35 (8.6)	17 (3.4)	0.284 (0.151-0.537)	< 0.0001	0.0003	6 (1.6)	0.070 (0.016-0.298)	0.0002	0.0006	5.00
AA vs. AG+GG			0.472 (0.357-0.626)	<0.0001	0.0003		0.179 (0.117-0.276)	<0.0001	0.0003	
AA +AG vs.			0.382 (0.206-0.710)	0.002	0.006		0.121 (0.029-0.514)	0.004	0.012	4.00
GG			01002 (01200 01 10)	01001	0.000		0.027 0.011)	0.001	01012	
HWE P	0.306	0.331				0.135				
TS										3.00
1494 de⊳ins	107 (10.0)	000 (45.0)	1.000 ((104 (40.0)				
0bp0bp	197 (48.2) 180 (44.0)	232 (45.8) 228 (45.0)	1.000 (reference) 1.127 (0.847-1.500)	0.411	0.411	184 (48.0) 170 (44.4)	1.121 (0.774-1.623)	0.546	0.546	2.0
0bp6bp 6bp6bp	32 (7.8)	47 (9.3)	1.256 (0.754 2.091)	0.381	0.381	29 (7.6)	1.124 (0.570-2.217)	0.546	0.546	
0bp0bp vs.	32 (7.0)	47 (9.5)	· · · · ·			29 (7.0)	· · · · · · · · · · · · · · · · · · ·			
0bp6bp+6bp6bp			1.147 (0.872-1.509)	0.326	0.326		1.122 (0.786-1.602)	0.527	0.527	1.0
0bp0bp										
+0bp6bp vs.			1.302 (0.928-1.825)	0.506	0.506		1.040 (0.543-1.994)	0.905	0.905	0.0
6bp6bp										0.0
HŴE P	0.300	0.398				0.228				

Abbreviations: AOR, adjusted odds ratio; CI, confidence interval; HWE, Hardy–Weinberg Equilibrium; SBI, silent brain infarction. Note; The 'reference' means that it is the standard for analysis by genotype in the table. * AORs were adjusted for these risk factors: age, gender, hypertension, diabetes mellitus, hyperlipidemia, and smoking. [†] *p*-value calculated by multivariable logistics regression. [‡] False discovery rate-adjusted *p*-value for multiple hypotheses testing using the Benjamini-Hochberg method.

One-carbon metabolism – Stroke

Association of *miR-34a*, *miR-130a*, *miR-150* and *miR-155* polymorphisms with the risk of ischemic stroke

GUN HO CHOI^{1*}, KI HAN KO^{1*}, JUNG OH KIM¹, JINKWON KIM², SEUNG HUN OH², IN BO HA KYUNG GI CHO³, OK JOON KIM², JINKUN BAE⁴ and NAM KEUN KIM¹

Table II. Comparison of genotype frequencies of microRNA polymorphisms between ischemic stroke subtype and the controls.

Characteristics	Controls (n=404)	Stroke patients (n=596)	AOR (95% CI)*	P-value	P-value ^b	LAD (n=202)	AOR (95% CI)*	P-value	P-value ^b	SVD (n=143)	AOR (95% CI)*	P-value	P-value ^b	CE (n=57)	AOR (95% CI)*	P-value	P-value
miR-34a rs6577555C>A																	
CC	239(59.2)	323 (54.2)	1.000 (reference)			107 (53.0)	1.000 (reference)			75 (52.4)	1.000 (reference)			34 (59.6)	1.000 (reference)		
CA	143 (35.4)	229 (38.4)	1.211 (0.915-1.603)	0.181	0.362	82 (40.6)	1.326 (0.911-1.930)	0.140	0.280	58 (40.6)	1.294 (0.852-1.967)	0.227	0.772	19 (33.3)	0.987 (0.537-1.813)	0.965	0.965
AA	22 (5.4)	44 (7.4)	1.384 (0.787-2.431)	0.259	0.389	13 (6.4)	1.347 (0.622-2.919)	0.450	0.675	10 (7.0)	1.244 (0.525-2.949)	0.621	0.621	4 (7.0)	1.432 (0.444-4.617)	0.548	0.822
Dominant			1.226 (0.938-1.602)	0.136	0.276		1.329 (0.927-1.905)	0.122	0.244		1.292 (0.864-1.932)	0.212	0.552		1.032 (0.581-1.834)	0.915	0.915
Recessive			1.252 (0.718-2.183)	0.429	0.562		1.192 (0.563-2.522)	0.646	0.969		1.123 (0.494-2.552)	0.782	0.782		1.277 (0.412-3.952)	0.672	0.672
miR-130a rs731384C>T																	
CC	328 (81.2)	479 (80.4)	1.000 (reference)			162 (80.2)	1.000 (reference)			116 (81.1)	1.000 (reference)			45 (78.9)	1.000 (reference)		
CT	74 (18.3)	110(18.5)	1.008 (0.715-1.420)	0.966	0.966	39 (19.3)	1.095 (0.696-1.723)	0.696	0.696	24 (16.8)	0.925 (0.545-1.570)	0.772	0.772	10(175)	0.975 (0.465-2.044)	0.947	0.965
TT	2(0.5)	7(1.2)	1.611 (0.309-8.412)	0.572	0.572	1 (0.5)	1.079 (0.095-12.24)	0.951	0.951	3 (2.1)	4.006 (0.616-26.050	0.146	0.219	2(35)	6.229 (0.835-46.48)	0.074	0.222
Dominant			1.027 (0.733-1.439)	0.879	0.879		1.091 (0.696-1.709)	0.704	0.939		1.012 (0.608-1.686)	0.962	0.962		1.124 (0.562-2.248)	0.742	0.915
Recessive			1.630 (0.312-8.519)	0.562	0.562		0.961 (0.085-10.84)	0.974	0.974		3.907 (0.604-25.28)	0.153	0.230		5.919 (0.797-43.97)	0.082	0.246
miR-150 rs73056059G>A	١																
GG	380 (94.1)	544 (91.3)	1.000 (reference)			181 (89.6)	1.000 (reference)			132 (92.3)	1.000 (reference)			48 (84.2)	1.000 (reference)		
GA	24 (5.9)	52 (8.7)	1.485 (0.881-2.504)	0.138	0.362	21 (10.4)	1.922 (1.003-3.681)	0.049	0.196	11 (7.7)	1.223 (0.558-2.683)	0.615	0.772	9 (15.8)	2.996 (1.293-6.939)	0.011	0.044
AA	0 (0.0)	0 (0.0)	N/A	N/A	N/A	0 (0.0)	N/A	N/A	N/A	0(0.0)	N/A	N/A	N/A	0 (0.0)	N/A	N/A	N/A
Dominant			1.485 (0.881-2.504)	0.138	0.276		1.922 (1.003-3.681)	0.049	0.196		1.223 (0.558-2.683)	0.615	0.820		2.996 (1.293-6.939)	0.011	0.044
Recessive			N/A	N/A	N/A		N/A	N/A	N/A		N/A	N/A	N/A		N/A	N/A	N/A
miR-155 rs767649T>A																	
TT	117 (29.0)	167 (28.0)	1.000 (reference)			58 (28.7)	1.000 (reference)			46 (32.2)	1.000 (reference)			13 (22.8)	1.000 (reference)		
TA	191 (47.3)	311 (52.2)	1.141 (0.835-1.558)	0.409	0.545	105 (52.0)	1.168 (0.766-1.781)	0.472	0.629	69 (48.3)	0.873 (0.548-1.388)	0.565	0.772	34 (59.6)	1.508 (0.753-3.019)	0.246	0.492
AA	96 (23.8)	118 (19.8)	0.794 (0.546-1.155)	0.228	0.389	39 (19.3)	0.710 (0.420-1.200)	0.201	0.603	28 (19.6)	0.638 (0.360-1.131)	0.124	0.219	10(175)	0.932 (0.385-2.258)	0.876	0.876
Dominant			1.024 (0.765-1.370)	0.876	0.879		1.006 (0.676-1.496)	0.977	0.977		0.786 (0.509-1.213)	0.276	0.552		1.280 (0.657-2.492)	0.468	0.915
Recessive			0.728 (0.529-1.002)	0.052	0.156		0.676 (0.435-1.050)	0.082	0.246		0.651 (0.395-1.074)	0.093	0.230		0.659 (0.317-1.368)	0.263	0.39

*Adjusted by age, gender, hypertension, diabetes mellitus, hyperfipidenia and smoking: *False discovery rate-adjusted P-ralue for multiple hypotheses testing using the Benjamini-Hochberg method. Values in bold font indicate statistical significance. AOR, adjusted odds ratio; 95% CI, 95% confidence interval; LAD, large-artery disease; SVD, small-vessel disease; CE, cardioembolism; NA, not applicable.

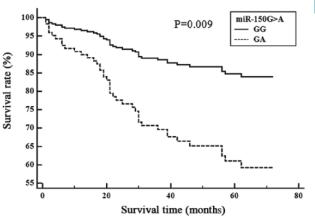


Figure 2. Cox proportional hazards regression of survival of patients with large-artery disease (LAD) according to *miR-150*G>A polymorphisms. Survival curves for the *miR-150*G>A polymorphism (GG vs. GA) (P=0.009).

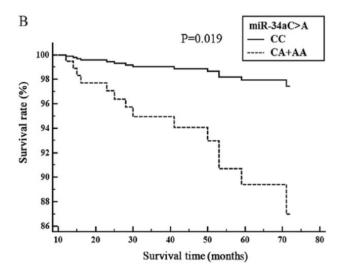
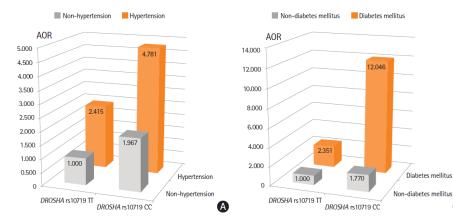
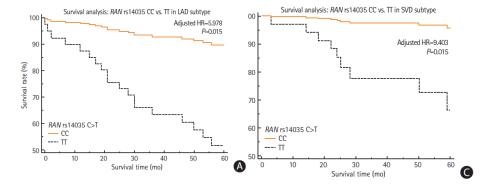


Figure 1. Cox proportional hazards regression of survival of patients with smallvessel disease (SVD) according to *miR-34a*C>A polymorphisms. (A) Survival curves for the *miR-34a*C>A polymorphism (CC vs. CA) (P=0.016). (B) Survival curves for the *miR-34a*C>A polymorphism (CC vs. CA+AA) (P=0.019).

Association of MicroRNA Biogenesis Genes Polymorphisms with Ischemic Stroke Susceptibility and Post–Stroke Mortality

JO Kim et al. J. Stroke. 2018

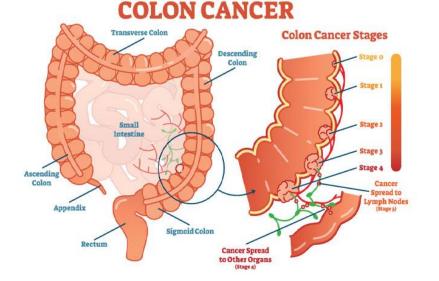

Jung Oh Kim,^a' Jinkun Bae,^b' Jinkwon Kim,^c Seung Hun Oh,^c Hui Jeong An,^a In Bo Han,^d Doyeun Oh,^{*} Ok Joon Kim,^c Nam Keun Kim^a


Table 2. Comparison of DICER	DROSHA, RAN, and XPO5	polymorphisms between ischer	nic stroke patients and controls subjects
------------------------------	-----------------------	------------------------------	---

Genotype	Controls (n=403)	Cases (n=585)	COR (95% CI)	P*	P	AOR (95% CI)*	P ⁶	P [†]
DICER rs13078 A>T								
AA	360 (89.3)	527 (90.1)	1.000 (reference)			1.000 (reference)		
AT	43 (10.7)	55 (9.4)	0.874 (0.574-1.331)	0.530	0.530	0.926 (0.596-1.439)	0.733	0.733
Π	0	3 (0.5)	NA			NA	0.994	0.994
Dominant (AA vs. AT+TT)			0.921 (0.608-1.398)	0.700	0.700	0.978 (0.633-1.511)	0.920	0.920
Recessive (AA+AT vs. TT)			NA			NA	0.994	0.994
HWE-P	0.258	0.238						
DICER rs3742330 A>G								
AA	148 (36.7)	169 (28.9)	1.000 (reference)			1.000 (reference)		
AG	180 (44.7)	280 (47.9)	1.362 (1.020-1.820)	0.036	0.129	1.313 (0.969-1.779)	0.079	0.23
GG	75 (18.6)	136 (23.2)	1.588 (1.110-2.272)	0.011	0.043	1.459 (1.000-2.126)	0.050	0.100
Dominant (AA vs. AG+GG)			1.429 (1.090-1.872)	0.010	0.057	1.360 (1.024-1.807)	0.034	0.102
Recessive (AA+AG vs. GG)			1.325 (0.966-1.817)	0.081	0.135	1.254 (0.902-1.745)	0.178	0.356
HWE-P	0.125	0.337						
DROSHA rs6877842 C>G								
CC	371 (92.1)	548 (93.7)	1.000 (reference)			1.000 (reference)		
CG	31 (7.7)	36 (6.2)	0.786 (0.478-1.294)	0.344	0.503	0.785 (0.467-1.320)	0.361	0.54
GG	1 (0.2)	1 (0.2)	0.677 (0.042-10.858)	0.783	0.783	0.769 (0.046-12.813)	0.855	0.994
Dominant (CC vs. CG+GG)			0.783 (0.479-1.279)	0.328	0.394	0.784 (0.470-1.309)	0.352	0.422
Recessive (CC+CG vs. GG)			0.688 (0.043-11.038)	0.792	0.792	0.766 (0.046-12.743)	0.852	0.99
HWE-P	0.680	0.614						
DROSHA rs10719 T>C								
Π	228 (56.6)	304 (52.0)	1.000 (reference)			1.000 (reference)		
TC	158 (39.2)		1.116 (0.856-1.454)	0.419	0.503	1.102 (0.835-1.455)	0.492	0.590
CC	17 (4.2)	46 (7.9)	2.029 (1.134-3.633)	0.017	0.043	2.038 (1.113-3.730)	0.021	0.994
Dominant (TT vs. TC+CC)			1.204 (0.933-1.554)	0.153	0.306	1.193 (0.913-1.558)	0.196	0.294
Recessive (TT+TC vs. CC)			1.938 (1.094-3.432)	0.023	0.115	2.001 (1.106-3.621)	0.022	0.132
HWE-P	0.107	0.950				1		
RAN rs14035 C>T								
CC	240 (59.6)	369 (63.1)	1.000 (reference)			1.000 (reference)		
СТ	149 (37.0)	192 (32.8)	0.838 (0.641-1.097)	0.198	0.396	0.803 (0.606-1.064)	0.127	0.254
Π	14 (3.5)	24 (4.1)	1.115 (0.566-2.198)	0.753	0.783	1.106 (0.545-2.244)	0.780	0.994
Dominant (CC vs. CT+TT)			0.862 (0.664-1.118)	0.263	0.394	0.830 (0.632-1.091)	0.181	0.29
Recessive (CC+CT vs. TT)			1.189 (0.607-2.327)	0.614	0.768	1.198 (0.597-2.403)	0.611	0.91
HWE-P	0.114	0.876						
(P05 rs11077 A>C								
AA	319 (79.2)	497 (85.0)	1.000 (reference)			1.000 (reference)		
AC	79 (19.6)		0.707 (0.505-0.989)	0.043	0.129	0.707 (0.497-1.005)	0.053	0.23
CC	5 (1.2)		0.128 (0.015-1.104)	0.062	0.103	0.101 (0.011-0.951)	0.045	0.100
Dominant (AA vs. AC+CC)			0.672 (0.483-0.936)	0.019	0.057	0.669 (0.473-0.945)	0.023	0.102
Recessive (AA+AC vs. CC)			0.136 (0.016-1.171)	0.069	0.135	0.116 (0.013-1.078)	0.058	0.174
HWE-P	0.965	0.161						

Values are presented as number (%).

RAN, Ran GTRase; XPO5, exportin 5; COR, crude odds ratio; CI, confidence interval; AOR, adjusted odds ratio; NA, not available; HWE, Hardy-Weinberg equilibrium. "Calculated by chi-square test according to genotype frequencies; 'P-value calculated by plase discovery rate test; "Odds ratios adjusted for age, sex, hypertension, diabeter mellitus, hyperlightemia, and smoking status; 'P-value calculated by plastis; regression analysis.

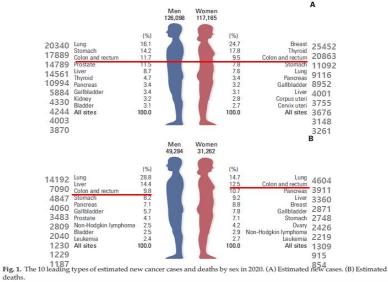


이웃사랑 · 인간존중 · 연구와 탐구

B

What is colorectal cancer?

Table. Colon and F	Rectum Cancer Staging [®]	
AJCC Stage	TNM Stage	Description
0	Tis NO MO	Tumor is confined to mucosa
I	T1 N0 M0	Tumor invades submucosa
I	T2 N0 M0	Tumor invades muscularis propria
IIA	T3 N0 M0	Tumor invades subserosa or beyond, no other organs involved
IIB	T4 N0 M0	Tumor invades adjacent organs or perforates visceral peritoneum
IIIA	T1-2 N1 M0	Metastasis to 1-3 regional lymph nodes with tumor invasion of submucosa and/or muscularis
IIIB	T3-4 N1 M0	Metastasis to 1-3 regional lymph nodes with tumor invasion of subserosa or adjacent organs
IIIC	Any T, N2 M0	Metastasis to 4 or more lymph nodes
IV	Any T, any N, M1	Metastasis to distant organs
Abbreviations: AJCC	C, American Joint Committee on	Cancer; Tis, tumor (carcinoma) in situ.


Three elements

- T= tumor
 - how large is the tumor?
 - N= node

•

۲

- Are cancer cells in the lymph nodes?
- M= metastases
 - Has the cancer spread to other organs?

Jung KW, et al. Cancer Res Treat. 2020

https://www.mountelizabeth.com.sg/healthplus/article/super-foods-colon-cancer

Polymorphisms in genes involved in folate metabolism and plasma DNA methylation in colorectal cancer patients

JONG WOO KIM $^{1*},\,\rm HYE\,\,MI\,\,PARK^{2*},\,\,YOUNG-KOOK\,\,CHOI^{2*},\,\,SO\,\,YOUNG\,\,CHONG^3,$ DOYEUN OH $^{2,3}\,$ and NAM KEUN KIM 2,3

JW Kim et al. Oncol. Rep. 2011

A

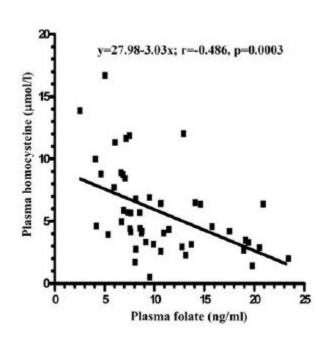


Table II. Genotype distribution of MTHFR 677C→T, 1298A→C, MTR 2756A→G polymorphisms in colorectal cancer patients.

Genotype	Control (%)	Cases (%)	OR (95% CI)	P-value
MTHFR 677				
CC	15 (28.3)	30 (44.8)	1.000 (Reference)	
CT	21 (39.6)	30 (44.8)	0.714 (0.310-1.645)	0.527
TT	17 (32.1)	7 (10.4)	0.206 (0.070-0.604)	0.005
MTHFR 1298				
AA	36 (67.9)	44 (65.7)	1.000 (Reference)	
AC	16 (30.2)	22 (32.8)	1.125 (0.516-2.455)	0.844
CC	1 (1.9)	1 (1.5)	0.818 (0.050-13.55)	1.000
MTR 2756				
AA	42 (79.2)	51 (76.1)	1.000 (Reference)	
AG	9 (17.0)	16 (23.9)	1.464 (0.587-3.469)	0.498
GG	2 (3.8)	0 (0.0)	0.165 (0.007-3.535)	0.212

Genetic variants in 3'-UTRs of methylenetetrahydrofolate reductase (*MTHFR*) predict colorectal cancer susceptibility in Koreans

Young Joo Jeon^{2,*}, Jong Woo Kim^{2,*}, Hye Mi Park¹, Jung O Kim¹, Hyo Geun Jang¹, Jisu Oh³, Seong Gyu Hwang³, Sung Won Kwon³, Doyeun Oh³ & Nam Keun Kim¹

> Control CRC Characteristics (n = 400)(n = 450)AOR (95% CI) Р FDR-P MTHFR 2572C>A CC 278 (69.5) 276 (61.3) 1.00 (ref) CA 113 (28.3) 157 (34.9) 1.44 (1.05-1.98) 0.022 0.029 AA 9 (2.3) 17 (3.8) 2.03 (0.85-4.86) 0.110 0.348 Dominant 1.49 (1.10-2.03) 0.010 0.013 Recessive 1.87(0.77 - 4.51)0.166 0.348 HWE P 0.529 0.357 MTHFR 4869C>G CC 360 (90.0) 365 (81.1) 1.00 (ref) CG 40 (10.0) 83 (18.4) 2.12 (1.37-3.26) <.001 0.002 GG 0 (0.0) 2(0.4)NA >.999 0.999 2.17 (1.41-3.33) <.001 0.001 Dominant Recessive NA >.999 >.999 HWE P 0.293 0.234 MTHFR 5488C>T CC 340 (85.0) 352 (78.2) 1.00 (ref) CT 59 (14.8) 96 (21.3) 1.64 (1.12-2.41) 0.011 0.022 TΤ 1(0.3)2(0.4)2.54 (0.19-34.43) 0.483 0.644 0.010 0.013 Dominant 1.66(1.13 - 2.42)2.40 (0.17-33.05) 0.514 0.685 Recessive HWE P 0.347 0.090 MTHFR 6685T>C TT 319 (79.8) 361 (80.2) 1.00 (ref) TC 82 (18.2) 0.767 0.767 79 (19.8) 0.95 (0.65-1.37) CC 2 (0.5) 7 (1.6) 3.12 (0.61-16.07) 0.174 0.348 Dominant 1.00(0.70-1.44)0.999 0.999 Recessive 3.13 (0.60-16.24) 0.174 0.348 HWE P 0.215 0.352

YJ	Jeon	et	al.	Sci	Rep.	20.15

	\geq 5.77 ng/mL of	folate	<5.77	ng/mL of f	folate
	AOR(95% CI)	Р	AOR(95% CI)	Р	RERI _{OR} (95% CI)
MTHFR 2572CC	1.00 (ref)		1.49 (0.95–2.32)	0.079	
MTHFR 2572CA + AA	1.13 (0.72–1.75)	0.597	3.74 (2.04–6.87)	<0.001	2.12 (1.37-3.80)
MTHFR 4869CC	1.00 (ref)		1.84 (1.25–2.73)	0.002	
MTHFR 4869CG + GG	1.97 (1.08–3.59)	0.027	4.41 (1.71–11.35)	0.002	1.60 (0.38-6.03)
MTHFR 5488CC	1.00 (ref)		1.72 (1.16–2.54)	0.007	
MTHFR 5488CT + TT	1.34 (0.79–2.27)	0.286	4.40 (1.74–11.11)	0.002	2.34 (0.79–7.30)
MTHFR 6685TT	1.00 (ref)		1.44 (0.97–2.16)	0.074	
MTHFR 6685TC+CC	0.67 (0.38–1.17)	0.160	3.31 (1.60-6.86)	0.001	2.20 (1.25-4.53)

One-carbon metabolism – Colorectal cancer

Association of VEGF and KDR Single Nucleotide Polymorphisms With Colorectal Cancer Susceptibility in Koreans

Moon Ju Jang,¹ Young Joo Jeon,² Jong Woo Kim,³ Yun Kyung Cho,⁴ Seung Ku Lee,⁵ Seong Gyu Hwang,^{1,2} Doyeun Oh,^{1,2} and Nam Keun Kim²*

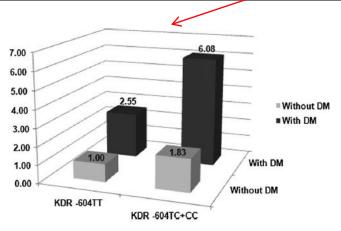

MJ Jang et al. Mol. Carcinog. 2013

Table 2. Genotype Frequencies of VEGF and KDR Polymorphisms Between Control and CRC Patients

Table 6. Colorectal Cancer Risk by Combined Gene-Environmental Effects

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Genotypes	$\begin{array}{l} \text{Controls} \\ \text{(n}=492) \end{array}$	CRC patients $(n = 390)$	OR (95% CI) ^a	AOR (95% CI) ^b	P ^c	P ^d
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VEGE $-2578C > A$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		260 (52.8)	217 (55.6)	1.00 (reference)	1.00 (reference)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.394	0.591
Recessive (CC + CA vs. AA) $1.02 (0.59-1.76)$ $1.15 (0.65-2.02)$ 0.629 0.6							0.855
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dominant (CC vs. $CA + AA$)			0.89 (0.68–1.17)	0.91 (0.69–1.20)	0.491	0.737
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Recessive (CC $+$ CA vs. AA)			1.02 (0.59–1.76)	1.15 (0.65-2.02)	0.629	0.922
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VEGF - 1154G > A						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GG	349 (70.9)	279 (71.5)	1.00 (reference)	1.00 (reference)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	GA	130 (26.4)	98 (25.1)	0.94 (0.69-1.28)	0.99 (0.72-1.35)	0.927	0.927
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AA	13 (2.6)	13 (3.3)	1.25 (0.57–2.74)	1.48 (0.66–3.32)	0.342	0.820
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dominant (GG vs. $GA + AA$)			0.97 (0.72-1.30)	1.03 (0.76–1.40)	0.852	0.852
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Recessive (GG $+$ GA vs. AA)			1.27 (0.58–2.77)	1.52 (0.68–3.40)	0.306	0.918
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.927
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		95 (19.3)	67 (17.2)				0.820
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0.815
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.87 (0.61–1.22)	0.88 (0.61–1.25)	0.468	0.922
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.080
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		13 (2.6)	11 (2.8)				0.855
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.084
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.07 (0.47-2.41)	1.06 (0.45-2.47)	0.898	0.922
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		212 (62 1)	10E (17 1)	1 00 (reference)	1 00 (reference)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						<0.0001	0.000
Dominant (TT vs. TC + CC) 1.92 (1.47-2.52) 1.96 (1.48-2.60) <0.0001 (C Recessive (TT + TC vs. CC) 1.43 (0.85-2.40) 1.51 (0.88-2.59) 0.133 (C KDR 1192G > A GG 396 (80.5) 291 (74.6) 1.00 (reference) 1.00 (reference)							0.084
Recessive (TT + TC vs. CC) 1.43 (0.85–2.40) 1.51 (0.88–2.59) 0.133 0 KDR 1192G > A GG 396 (80.5) 291 (74.6) 1.00 (reference) 1.00 (reference)		29 (5.9)	52 (0.2)				0.004
KDR 1192G > A 396 (80.5) 291 (74.6) 1.00 (reference) 1.00 (reference)							0.798
GG 396 (80.5) 291 (74.6) 1.00 (reference) 1.00 (reference)				1.45 (0.05-2.40)	1.51 (0.00-2.55)	0.155	0.750
		396 (80 5)	291 (74 6)	1 00 (reference)	1 00 (reference)		
	GA	92 (18.7)	96 (24.6)	1.42 (1.03–1.96)	1.42 (1.02–1.99)	0.040	0.080
							0.855
		. (0.0)	0 (0.0)				0.084
							0.922

	Without HTN	With HTN	Without DM	With DM	
Genotypes	AOR (95% CI) ^a				
VEGF – 2578CC	1.00 (reference)	1.84 (1.24–2.75)	1.00 (reference)	2.94 (1.85–4.68)	
VEGF-2578CA + AA	0.91 (0.60-1.38)	1.61 (1.06-2.45)	0.93 (0.68-1.27)	2.44 (1.52-3.94)	
VEGF 1154GG	1.00 (reference)	1.94 (1.37-2.74)	1.00 (reference)	2.31 (1.56-3.41)	
VEGF 1154GA + AA	1.23 (0.78-1.92)	1.83 (1.15-2.90)	0.91 (0.65-1.29)	3.96 (2.09-7.49)	
VEGF –634GG	1.00 (reference)	1.99 (1.19–3.33)	1.00 (reference)	2.37 (1.28-4.39)	
VEGF –634GC + CC	0.93 (0.59-1.45)	1.64 (1.06-2.53)	0.88 (0.63-1.24)	2.56 (1.62-4.06)	
VEGF 936CC	1.00 (reference)	1.82 (1.27-2.61)	1.00 (reference)	3.43 (2.23-5.28)	
VEGF 936CT + TT	1.53 (0.98-2.40)	2.61 (1.69-4.04)	1.61 (1.15-2.25)	2.86 (1.73-4.74)	
KDR –604TT	1.00 (reference)	1.46 (0.98-2.16)	1.00 (reference)	2.55 (1.64-3.97)	
<i>KDR</i> – 604TC + CC	1.51 (0.99-2.30)	3.63 (2.37-5.55)	1.83 (1.33-2.52)	6.08 (3.55-10.41)	
KDR 1192GG	1.00 (reference)	1.63 (1.18-2.26)	1.00 (reference)	2.60 (1.79-3.79)	
KDR 1192GA + AA	1.19 (0.71-1.99)	2.63 (1.62-4.27)	1.34 (0.92-1.95)	4.24 (2.07-8.70)	

Angiogenesis – Colorectal cancer

Association between Five Common Plasminogen Activator Inhibitor-1 (*PAI-1*) Gene Polymorphisms and Colorectal Cancer Susceptibility

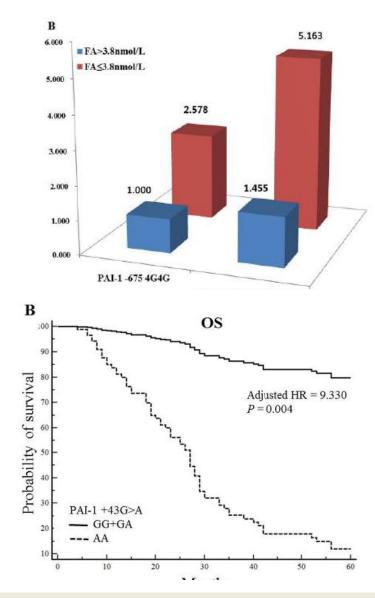

Jisu Oh ^{1,†}, Hui Jeong An ^{2,†}, Jung Oh Kim ², Hak Hoon Jun ³, Woo Ram Kim ³, Eo Jin Kim ⁴, Doyeun Oh ¹, Jong Woo Kim ^{3,*} and Nam Keun Kim ^{2,*} JS Oh et al. Oncol. Rep. 2014

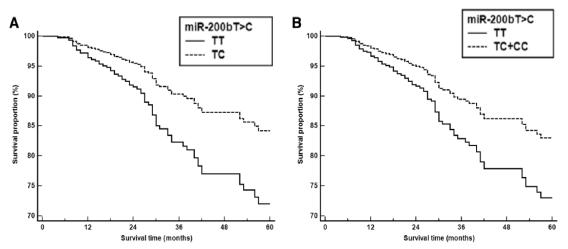
Table 2. Comparison of the genotype frequencies and AOR (adjusted odds ratio) values of *PAI-1* gene polymorphisms between the colorectal cancer and control subjects.

Genotype	Controls $(n = 416)$	CRC Patients ($n = 459$)	AOR (95% CI) *	p ^a	р ^в
<i>PAI-1</i> -844G > A					
GG	136 (32.7)	154 (33.6)	1.000 (reference)		
GA	199 (47.8)	230 (50.1)	1.000 (0.730-1.370)	1.00	1.00
AA	81 (19.5)	75 (16.3)	0.779 (0.508-1.195)	0.25	0.42
Dominant (GG vs. GA + AA)			0.937 (0.695-1.262)	0.67	0.83
Recessive (GG + GA vs. AA)			0.806 (0.559-1.164)	0.25	0.42
HWE-P	0.592	0.415			
PAI-1-675 4G > 5G					
4G4G	180 (43.3)	171 (37.3)	1.000 (reference)		
4G5G	180 (43.3)	206 (44.9)	1.212 (0.890-1.651)	0.22	1.00
5G5G	56 (13.5)	82 (17.9)	1.556 (1.012-2.391)	0.04	0.11
Dominant (4G4G vs. 4G5G + 5G5G)			1.284 (0.963-1.714)	0.09	0.45
Recessive (4G4G + 4G5G vs. 5G5G)			1.385 (0.938-2.044)	0.10	0.26
HWE-P	0.306	0.128			
<i>PAI-1</i> +43G > A					
GG	335 (80.5)	375 (81.7)	1.000 (reference)		
GA	75 (18.0)	70 (15.3)	0.890 (0.612-1.296)	0.54	1.00
AA	6 (1.4)	14 (3.1)	0.647 (0.155-2.694)	0.55	0.69
Dominant (GG vs. GA + AA)			0.875 (0.606-1.261)	0.47	0.79
Recessive (GG + GA vs. AA)			0.670 (0.161-2.779)	0.58	0.73
HWE-P	0.447	0.851			
<i>PAI-1</i> +9785G > A					
GG	383 (92.1)	417 (90.8)	1.000 (reference)		
GA	31 (7.5)	42 (9.2)	1.079 (0.629-1.849)	0.78	1.00
AA	2 (0.5)	0 (0.0)	N/A	1.00	1.00
Dominant (GG vs. GA + AA)			1.000 (0.588-1.700)	1.00	1.00
Recessive (GG + GA vs. AA)			N/A	1.00	1.00
HWE-P	0.124	0.329			
PAI-1 + 11053T > G					
TT	107 (25.7)	133 (29.0)	1.000 (reference)		
TG	204 (49.0)	241 (52.5)	0.966 (0.692-1.349)	0.84	1.00
GG	105 (25.2)	85 (18.5)	0.620 (0.413-0.932)	0.02	0.11
Dominant (TT vs. TG + GG)			0.850 (0.620-1.165)	0.31	0.78
Recessive (TT + TG vs. GG)			0.662 (0.469-0.933)	0.02	0.10
HWE-P	0.695	0.200			

* The adjusted odds ratio on the basis of risk factors, such as age, gender, hypertension, and diabetes mellitus. ^a *p*-value calculated by multiple logistics regression analysis. ^b False-positive discovery rate (FDR)-adjusted *p*-value.

Angiogenesis – Colorectal cancer

Genetic associations between the miRNA polymorphisms miR-130b (rs373001), miR-200b (rs7549819), and miR-495 (rs2281611) and colorectal cancer susceptibility


Eun-Gyo Kim¹, Jung Oh Kim¹, Han Sung Park¹, Chang Soo Ryu¹, Jisu Oh², Hak Hoon Jun³, Jong Woo Kim^{3*} and Nam Keun Kim^{1*} EG Kim et al. BMC Cancer (2019)

Genotype	CRC(n = 472)	Death(<i>n</i> = 85)	Adjusted HR ^a (95% CI)	Р
<i>miR-130b</i> rs373001T > C				
TT	269 (57.0)	47 (55.3)	1.000 (reference)	
TC	168 (35.6)	29 (34.1)	0.810 (0.491–1.338)	0.411
CC	35 (7.4)	9 (10.6)	1.345 (0.632–2.864)	0.442
Dominant (TT vs TC + CC)			0.910 (0.575–1.438)	0.685
Recessive (TT + TC vs CC)			1.435 (0.688–2.990)	0.336
<i>miR-200b</i> rs7549819T > C				
TT	216 (45.7)	48 (56.5)	1.000 (reference)	
TC	200 (42.4)	26 (30.6)	0.522 (0.307–0.888)	0.017
CC	56 (11.9)	11 (12.9)	0.781 (0.393–1.555)	0.482
Dominant (TT vs TC + CC)			0.592 (0.373–0.940)	0.026
Recessive (TT + TC vs CC)			0.994 (0.509–1.944)	0.987
<i>miR-495</i> rs2281611A > C				
AA	125 (26.5)	23 (27.1)	1.000 (reference)	
AC	222 (47.0)	37 (43.5)	1.077 (0.618–1.879)	0.794
CC	125 (26.5)	25 (29.4)	1.167 (0.628–2.170)	0.62
Dominant (AA vs AC + CC)			1.126 (0.672–1.886)	0.65
Recessive (AA+AC vs CC)			1.147 (0.691–1.903)	0.59

Check

Table 1 Baseline characteristics between controls and CRC patients

Characteristic	Controls (n = 399)	CRC Patients $(n = 472)$	Р	Colon cancer (n = 268)	Ρ	Rectal cancer (n = 193)	Ρ
Age (years, mean \pm SD)	61.15 ± 10.93	61.99±12.32	0.129	61.44 ± 12.88	0.464	62.28 ± 11.54	0.153
Male (%)	173 (43.4)	212 (44.9)	0.645	118 (44.0)	0.915	88 (45.6)	0.750
Hypertension (%)	155 (38.8)	281 (59.5)	< 0.0001	157 (58.6)	0.003	117 (60.6)	0.003
HDL-C (mg/dL, mean \pm SD)	45.91 ± 13.48	42.18 ± 13.05	0.001	42.82 ± 13.00	0.013	41.27 ± 13.07	0.001
LDL-C (mg/dL, mean ± SD)	115.87 ± 40.28	101.31 ± 28.62	0.003	98.55 ± 28.01	0.002	104.32 ± 29.54	0.142
Diabetes mellitus (%)	52 (13.0)	156 (33.1)	< 0.0001	92 (34.3)	< 0.0001	64 (33.2)	< 0.0001
Smoking (%)	138 (34.6)	92 (19.5)	< 0.0001	55 (20.5)	0.003	35 (18.1)	0.002
Folate (nmol/L, mean±SD)	8.64±6.13	7.94 ± 7.13	< 0.0001	8.12 ± 7.36	0.001	7.70 ± 6.86	0.000
Triglyceride (mg/dL, mean±SD)	146.79 ± 89.33	129.00 ± 86.30	0.0003	126.93 ± 84.48	0.001	132.48 ± 90.86	0.015
Homocysteine (µmol/L, mean±SD)	9.96±4.27	10.68±7.83	0.671	10.47 ± 8.21	0.572	10.88 ± 7.32	0.215
Total cholesterol (mg/dL, mean \pm SD)	192.00 ± 37.32	178.76 ± 40.56	0.0001	178.73 ± 38.88	0.001	176.69 ± 42.89	0.002

Fig. 2 Survival curves depicting the relationship between the *miR-200b*T > C polymorphism and CRC patients. Cox proportional-hazards regression model of CRC patient survival. Patients carrying the *miR-200b* (A) TC and (B) TC + CC genotypes had a reduced risk of death when compared with the TT genotype (P = 0.017 and P = 0.026, respectively)

Genetic Variants of *HOTAIR* Associated With Colorectal Cancer Susceptibility and Mortality

Jung Oh Kim^{1†}, Hak Hoon Jun^{2†}, Eo Jin Kim^{3†}, Jeong Yong Lee¹, Han Sung Park¹, Chang Soo Ryu¹, Seungki Kim², Doyeun Oh⁴, Jong Woo Kim^{2*} and Nam Keun Kim^{1*}

Kim JO, et al. Front Oncol. 2020

Characteristic	Control (n = 416)	CRC (n = 474)	P*	Colon (n = 272)	P*	Rectum (n = 189)	P*
Male, n (%)	173 (41.6)	214 (45.1)	0.317	122 (44.9)	0.443	84 (44.4)	0.568
Age (mean \pm SD)	61.2 ± 11.38	62.1 ± 12.48	0.230	61.9 ± 12.97	0.267	62.1 ± 11.81	0.344
HTN, n (%)	168 (40.4)	157 (33.1)	0.030	86 (31.6)	0.025	68 (36)	0.347
DM, n (%)	55 (13.2)	76 (16.0)	0.277	46 (16.9)	0.220	30 (15.9)	< 0.0001
Folate (mean \pm SD)	9.0 ± 8.05	7.8 ± 6.82	< 0.0001	7.9 ± 6.77	< 0.0001	7.7 ± 6.97	< 0.0001
Hcy (mean \pm SD)	9.8 ± 4.25	10.7 ± 7.8	0.330	10.4 ± 8.12	0.870	10.9 ± 7.34	0.096
TNM stage							
1		45 (9.5)		20 (7.4)		24 (12.7)	
II.		188 (39.7)		115 (42.3)		70 (37)	
III		189 (39.9)		109 (40.1)		78 (41.3)	
IV		46 (9.7)		27 (9.9)		16 (8.5)	
Tumor size							
T < 5 cm		275 (58)		176 (64.7)		96 (50.8)	
$T \ge 5 \text{ cm}$		187 (39.5)		92 (33.8)		93 (49.2)	

CRC, colorectal cancer; SD, standard deviation; HTN, hypertension; DM, diabetes mellitus; Hcy, plasma homocysteine; TNM, turnor node metastasis. 'P-values were calculated using chi-squared tests for categorical data and two-sided t-tests for continuous data.

TABLE 2 Comparison of HOTAIR polymorphism genotype frequencies between CRC patients and healthy controls

Genotypes	Controls $(n = 416)$	CRC (n = 474)	AOR (95% CI) ^a	P	Colon (n = 272)	AOR (95% CI)*	P	Rectum (n = 189)	AOR (95% CI) ^a	P
HOTAIR rs7958904 G>C										
GG	249 (59.9)	244 (51.5)	1.000 (reference)		151 (55.5)	1.000 (reference)		89 (47.1)	1.000 (reference)	
GC	140 (33.7)	191 (40.3)	1.352 (1.014-1.801)	0.040	102 (37.5)	1.202 (0.859-1.681)	0.283	84 (44.4)	1.559 (1.076-2.258)	0.019
CC	27 (6.5)	39 (8.2)	1.399 (0.802-2.443)	0.237	19 (7)	1.364 (0.7-2.66)	0.362	16 (8.5)	1.516 (0.751-3.062)	0.246
Dominant			1.351 (1.027-1.777)	0.032		1.206 (0.875-1.663)	0.252		1.547 (1.085-2.205)	0.016
Recessive			1.168 (0.681-2.002)	0.573		1.144 (0.602–2.175)	0.682		1.235 (0.626-2.435)	0.543
HWE-P	0.230	0.850			0.755			0.538		
HOTAIR rs1899663 G>T										
GG	271 (65.1)	264 (55.7)	1.000 (reference)		161 (59.2)	1.000 (reference)		101 (53.4)	1.000 (reference)	
GT	132 (31.7)	186 (39.2)	1.338 (1.004-1.784)	0.047	100 (36.8)	1.219 (0.871-1.707)	0.248	76 (40.2)	1.404 (0.968-2.038)	0.074
TT	13 (3.1)	24 (5.1)	1.783 (0.86-3.698)	0.120	11 (4)	1.608 (0.671-3.854)	0.287	12 (6.3)	2.141 (0.906-5.06)	0.083
Dominant			1.378 (1.043-1.822)	0.024		1.244 (0.897-1.725)	0.191		1.481 (1.035-2.12)	0.032
Recessive			1.559 (0.764-3.182)	0.223		1.387 (0.591-3.256)	0.452		1.958 (0.849-4.515)	0.115
HWE-P	0.523	0.228			0.350			0.646		
HOTAIR rs4759314 A>G										
AA	358 (86.1)	395 (83.3)	1.000 (reference)		229 (84.2)	1.000 (reference)		159 (84.1)	1.000 (reference)	
AG	55 (13.2)	71 (15)	1.062 (0.717-1.574)	0.763	39 (14.3)	1.031 (0.651-1.632)	0.898	28 (14.8)	1.026 (0.611-1.721)	0.924
GG	3 (0.7)	8 (1.7)	1.017 (0.201-5.139)	0.984	4 (1.5)	0.622 (0.063-6.126)	0.684	2 (1.1)	1.722 (0.28-10.577)	0.557
Dominant			1.059 (0.721-1.557)	0.770		1.012 (0.644-1.591)	0.960		1.056 (0.639-1.746)	0.831
Recessive			0.994 (0.197-5.016)	0.994		0.62 (0.063-6.091)	0.682		1.658 (0.27-10.172)	0.585
HWE-P	0.581	0.027			0.130			0.545		
HOTAIR rs920778 T>C										
TT	241 (57.9)	258 (54.4)	1.000 (reference)		149 (54.8)	1.000 (reference)		102 (54)	1.000 (reference)	
TC	149 (35.8)	180 (38)	1.115 (0.838-1.484)	0.457	103 (37.9)	1.152 (0.825-1.607)	0.407	73 (38.6)	1.075 (0.74-1.56)	0.706
CC	26 (6.3)	36 (7.6)	1.222 (0.699-2.135)	0.482	20 (7.4)	1.353 (0.704-2.599)	0.365	14 (7.4)	1.118 (0.54-2.317)	0.763
Dominant			1.124 (0.855-1.477)	0.402		1.167 (0.849-1.604)	0.342		1.076 (0.754-1.535)	0.688
Recessive			1.139 (0.661-1.962)	0.640		1.228 (0.653-2.307)	0.524		1.058 (0.519-2.159)	0.876
HWE-P	0.645	0.555			0.706			0.851		

CRC, colorectal cancer; AOR, adjusted odds ratio; 95% Cl, 95% confidence interval.

^a Adjusted by age, gender, HTN, DM.

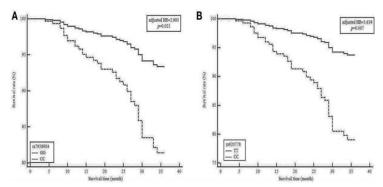


FIGURE 1 | Survival plot from a Cox proportion a hazards model with HOTAIR rs7958904G>C and rs920778T>C polymorphisms in colorectal cancer (CRC).

이웃사랑 · 인간존중 · 연구와 탐구

TABLE 1 | Baseline characteristics between CRC patients and healthy control subjects.

Comparison of Odds ratio (over 2.5) for the gene polymorhisms in each disease

Disease	Category	Gene	Sequence variation	Genotype	AOR (95% CI)	References
	Angiogenesis	VEGF	Rs25703xxG>A	GA	2.774 (1.512–5.092)	Lee HH et al. Fertil Steril 2010
	Endothelial function	AT1R	rs51xxA>C	AC	3.171 (1.562-6.436)	Jeon YJ, et al. Am J Reprod Immunol. 2013
RPL	Fibrinolysis	PAI-1	rs22276xxG>A/ rs7998xx 4G>5G/ rs72xxT>G	A-5G-G	0.033 (0.002 – 0.573)	Jeon YJ et al. Thromb Haemost 2013
	Homocysteine	TCN2	rs96067xxA>G	AG+GG	3.110 (1.277–7.570)	Kim HS et al. Am J Reprod Immunol 2014
	miRNA	miR-150	rs730560xxG>A	GA	2.502 (1.555–4.025)	Park HS et al. Reprod Biomed Online. 2019
	miRNA biogenesis	AGO1	rs5959xx	AA	4.146 (1.075–15.996)	Kim YR et al. Sci Rep. 2019
	Angiogenesis	VEGF	Rs8330xxT>C	СС	2.667 (1.002–7.095)	Jung YW et al. Reprod Biomed Online 2016
RIF	Homocysteine	TCN2	rs96067xxA>G	AG	4.732 (1.220-18.356)	Park HS et al. J Assist Reprod Genet. 2019
	miRNA	miR-1302-3	rs75893xxC>T	СТ	0.237 (0.090-0.624)	Lee HA et al. Reprod Sci 2018
	Angiogenesis	MMP-2	rs2438xxC>T	СТ	2.651 (1.406–4.998)	Kim et al. Maturitas 2015
201	Fibrinolysis	PAI-1	rs22276xxG>A	GA	5.237 (2.354–11.652)	Jeon et al. Fertil Steril 2014
	Cytokine	TNF-α	rs17999xxT>C	СС	40.204 (2.314-698.415)	Kim et al. Fertil Steril 2012
		eNOS	1 intron VNTR	4a4b	2.769 (1.233-6.220)	OJ Kim et al. Mol. Med. Rep. 2010
Stroke	Homocysteine	TS	rs27xx A>G	GG	0.284 (0.151–0.537)	JO Kim et al. J. Pers. Med. 2021
ытоке		MTHFR	rs48460xx T>C	СС	10.146 (1.297–79.336)	JO Kim et al. Sci Rep. 2017
	miRNA biogenesis	XPO5	rs110xx A>C	СС	0.101 (0.011–0.951)	JO Kim et al. J. Stroke. 2018
	Angiogonosis	VECE	rs30250xx C>T	CT+TT	4.156 (1.885-9.163)	SJ Bae et al. Anticancer Res. 2008
CRC	Angiogenesis	VEGF	rs15703xx G>A	AA	2.735 (1.243–6.015)	YS Choi et al. Genes Genom. 2011
LKL	Homogystoins	MTHFR	rs18011xx C>T	тт	0.206 (0.070-0.604)	JW Kim et al. Oncol. Rep. 2011
	Homocysteine	TS	rs27xx A>G	GG	3.19 (1.91–5.34)	YJ Jeon et al. J. Pers. Med. 2021

Conclusion

- 1. Interestingly, most of the four mechanism-related genes of the five diseases studied were found to be related to the development of the diseases.
- 2. In addition, the types and risks of gene mutations as risk factors in each disease were very similar. Moreover, five genes were found to be common risk factors in two or more diseases. And it was found that various nutritional factors or risk factors of lifestyle-type diseases increase the risk of disease development.
- 3. Therefore, it was found that common SNPs normally play essential roles like protooncogenes, but when risk factors such as malnutrition, hypertension or diabetes act as promoters, they change into oncogene-like pathogens.
- 4. In microRNA and IncRNA, HOTAIR, etc., it was found that SNP not only acts as a disease risk factor, but also affects the survival rate of stroke and colorectal cancer patients.
- 5. Therefore, continuous researches on SNPs using NGS and bioinformatics study is required in the future.

Acknowledgements

- Ph.D Candidate
 Park Hang Sung
 Lee Jeong Yong
 Ko Eun Ju
 Park Hyun Woo
- M.S. Candidate Kwon Min Jung

- Obstetrics & Gynecology Ahn Eun Hee, Kim Young Ran
- Fertility Center Lee Woo Sik, Kim Ji Hyang, Choi Dong Hee
- Gastroenterology Hwang Seong Gyu
- Cardiology Sung Jung Hoon, Kim In Jai
- Hemato-Oncology Chong So Young, Oh Ji Soo, Oh Doyeon
- Surgery Jong Woo Kim, Jun Hak Hoon
- Orthopedics
 Shin Dong Eun, Jung Young Sun
- Neurosurgery Han In Bo, Park Young Seok
 - Neurology Kim Ok Joon, Oh Seung Hun, Jin Kwon Kim

٠