의생명과학과 심성한

임상 및 기초연구에서의 유전체분석법 소개 및 사례

- 강남차병원 유전학 연구실 (~2020)
- 차바이오텍 유전체사업본부 강남센터 (2021~)

차바이오텍 유전체사업본부 판교종합연구원 624호 강남센터

- Congenital anomalies
- SNP-array
- Exome sequencing
- Low-depth whole genome sequencing

A comparison of clinically available methods to analyze the genome

	cytoger	netics	DNA-based			
	G-banding karyotype	FISH	aCGH	SNP array	Whole exome sequencing	
			Sample Labelied with red fluorescent dy Wis together and apply to slide Hybridization General Computer analysis Computer analysis Consect (deletions)	Are work Market and Market Graduar to Aray Graduar to Aray Area Charles Argentering		
Resolution	~10Mb (>5Mb)	Variable (kb ~ Mb)	< 1Mb	Several kb ~1Mb	Single base-pair	
Cost	high	high	high	high	high	
Sensitivity (true positive rate)	~5%	~5%	>20%	>20%	>20%	

	Cytoger	netics	DNA-based				
	G-banding karyotype	FISH	aCGH	SNP array	Whole exome sequencing		
			Annue with more and apply to all and any more and apply to all any more any mo	Har source The advectory for the advectory of the advectory GeneChip Affymetrix	Array-based capturing In-solution capturing Removal of unbound fragments Multiplexing Enriched library Enriched library Multiplexing Enriched library Enriched library		
Unique strength	 Easy and reliable High sensitivity for mosaic cultures Detection of balanced chromosomal abnormalities 	 High sensitivity for mosaic cultures Detection of complex karyotype and markers 	 High resolution CNV 	 High resolution LOH UPD 	 Ultimate resolution Point mutations 		
Unique limitations	• Low resolution	 Inability to identify CNVs 	 Low sensitivity for mosaic cultures Cannot detect polyploidy and balanced abnormalities 	•Low sensitivity for mosaic cultures	• Difficulty interpretation (VUS)		

A comparison of clinically available methods to analyze the genome

	PCR-based						
	<section-header></section-header>	1. Denaturation and Hybridization Programmer sequence (tell) Hybridization sequence (tell) Programmer sequence (tell) Hybridization sequence (tell) S. PCR with universal primers X and Y proposetial amplication of lighted probes onto: X Y					
Unique strength	 Rapid method (within 24 hours) for prenatal aneuploid screening Required only small amount of sample – no cell culture Relative low-cost High-throughput 	 A rapid, high throughput technique for copy number quantification – up to 50 different genomic DNA or RNA sequences Many different applications (probe mixes) tumor profiling, methylation profiling 					
Unique limitations	 Low coverage (only 13, 18, 21, X and Y) Homozygosity False result due to MCC, low-rate mosaicism, STR duplication 	 Can not detect balanced chromosomal abnormalities A sufficient number of cells is required Not genome-wide scanning 					

Cases

Case Report Taiwanese Journal of Obstetrics & Gynecology 58 (2019) 318e323

Prenatal diagnosis and molecular cytogenetic characterization of partial dup(18q)/del(18p) due to a paternal pericentric inversion 18 in a fetus with multiple anomalies

Min Jin Lee ^a, Sang Hee Park ^b, Sung Han Shim ^b, Myoung-jin Moon ^{c, **}, Dong Hyun Cha ^{a, *}

37-year-old F (Gravida 2, para 0, SA 1)
17 weeks and 5 days of gestation
Normal for integrated maternal serum
screening
Abnormal ultrasound findings
Amniocentesis and chromosome analysis
→ 46,00,der(18)

- Hypertelorism
- Clenched hands

Terminated at 23 weeks and 3 days of gestation

Father – balanced pericentric inversion carrier; inv(18)(p11.2q21.2)

CytoScan 750K SNP array – 3Mb deletion of 18p/23.7Mb duplication of 18q

8 years

40 weeks, 3.0kg, C/sec Dystocia, apnea, cyanosis Growth retardation Wt <1% Ht <1% OFC <1%

Moderate MR (IQ 54)

Autism, aggressive behavior Microcephaly,

epicanthal fold small palpebral fissures Hypoplastic alae nasi

Divergent starbismus

Hypoplastic helix

MRI- Subarachnoid cyst in the l eft cerebellar hemisphere and peri medullary cistern

Medial deviation of 2^{nd} and 3^{rd} toe s in both feet

micropenis

10 months

IUGR, bilateral hydronephrosis 38 weeks, 2.19kg, C/sec 11 months Growth retardation Wt <1% Ht <1% OFC <1%

Microcephaly, plagiocephaly

Round face, epicanthal fold upslanting palpebral fissures, wide nasal bridge, broad nasal tip

Retinal detachment with vitreous hemorrhage

Narrow openings of external acoustic meatus without intertragic notch

MRI- delayed myelination in the brain with abnormal T2 hyperintensities or white matter volume loss

Proximal displacement of right 3 rd and left 4th toes

Feeding problems, residual penile septum, hydronephrosis

46,XY normal male \rightarrow 46,XY,der(7)(?)

- *MECP2* duplication
 - Severe to profound X-linked intellectual disability
 - Rett syndromic features, progressive spasticity, neonatal or infantile hypotonia, poor speech development, recurrent respiratory infections, epilepsy, and dysmorphic facial features such as large ears, mid-face hypoplasia, brachycephaly, and depressed nasal bridge (Ramocki et al., 2010)
- X inactivation test of the mother: complete skewed of X chromosome with duplication

- Patients: 24 clinically diagnosed as Stargardt disease
- Targeted exome sequencing design:
 - 39 genes including ABCA4, ELOVL4, PROM1
 - Ion Ampliseq[™] target selection technology (Thermo Fisher, USA)
 - Target size : 112.72 kb, Amplicon : 958 ea
 - Coverage:

ABCA4	99.7%
ELOVL4	100%
PROM1	100%

Table 2. List of mutations identified from exome sequencing of the ABCA4 gene

Patient No	Gene	Exon	cDNA sequence change	Amino acid change	Domain	Note	Mutation type	PolyPhen2 prediction	Mutation Taster
P001	ABCA4 ABCA4	8	c.983A>T	p.Glu328Val	extracellular loop	reported	0	5	5
	ABCA4	21	c.3106G>A	p.Glu1036Lys	ATP-binding domain	reported		-	-
P002	ABCA4 ABCA4	19 35	c:2894A>G c:4972A>C	p.Asn965Ser p.Ser1658Arg	extracellular loop –	reported novel	– missense	– possibly damaging	DC
P003	ABCA4 ABCA4	20 13	c.3035_3037delACA c.1804C>T	p.Asn1012del p.Arg602Trp	ATP-binding domain extracellular loop	novel reported	deletion -	2	DC -
P004	ABCA4	19	c.2974A>C	p.Thr972Pro	ATP-binding domain	novel	missense	probably damaging	DC
	ABCA4	43	c.5929G>A	p.Gly1977Ser	ATP-binding domain	reported	100		
P011	ABCA4 ABCA4 ABCA4	10 40 45	c.1268A>G c.5656G>A c.6146_6146delA	p.His423Arg p.Gly1886Arg p.1xs2049Arg	extracellular loop transmembrane domain ATP-binding domain	reported reported	- - deletion	- - benian	- DC
P012	ABCA4 ABCA4	10 10	c.1268A>G c.1309C>A	p.His423Arg p.Glp437Lvs	extracellular loop extracellular loop	reported	- missense	- benign	- DC
P013	ABCA4 ABCA4	6 12	c.635G>A c.1699G>A	p.Arg212His p.Val567Met	extracellular loop extracellular loop	reported reported	2	-	5
P015	ABCA4 ABCA4	6 49	c.635G>A c.6764G>T	p.Arg212His p.Ser2255Ile	extracellular loop -	reported reported	1		1
P016	ABCA4 ABCA4 ABCA4	5 6 10	c.560G>A c.635G>A c.1268A>G	p.Arg187His p.Arg212His p.His423Arg	extracellular loop extracellular loop extracellular loop	novel reported	missense -	benign -	DC -
P017	ABCA4 ABCA4	8	c.880C>T c.1294G>A	p.Gln294*	extracellular loop extracellular loop	novel	stop-gain	-	DC
	ABCA4	33	c.4685T>A	p.lle1562Thr	extracellular loop	reported	-	2	2
P018	ABCA4 ABCA4 ABCA4	10 20 47	c.1268A>G c.3035_3037delACA c.6389T>A	p.His423Arg p.Asn1012Ile p.Met2130Lys	extracellular loop ATP-binding domain -	reported novel novel	- deletion missense	_ probably damaging	DC DC
P020	ABCA4 ABCA4	8 23	c.880C>T c.3398T>C	p.Gln294* p.Ile1133Thr	extracellular loop extracellular loop	novel novel	stop-gain missense	- benign	DC DC
P021	ABCA4 ABCA4	14 40	c.1958G>A c.5656G>A	p.Arg653His p.Gly1886Arg	transmembrane domain transmembrane domain	reported reported	2	5	2
P022	ABCA4 ABCA4	13 44	c.1933G>A c.6146-6146delA	p.Asp645Asn p.Lys2049Arg	extracellular loop ATP-binding domain	reported novel	- deletion	- benign	- DC
P023	ABCA4 ABCA4 ABCA4	20 24 46	c.3035_3037delACA c.3547G>T c.6289C>T	p.Asn1012lle p.Gly1183Cys p.Pro2097Ser	ATP-binding domain - ATP-binding domain	novel reported novel	deletion - missense	- probably damaging	DC DC
P024	ABCA4 ABCA4	10 33	c.1268A>G c.4748T>C	p.His423Arg p.Leu1583Pro	extracellular loop extracellular loop	reported reported		-	<u> </u>
P026	ABCA4	16	c.2384G>A	p.Ser795Asn	transmembrane domain	novel	missense	possibly damaging	DC
	ABCA4	23(?)	c.3470T>G	p.Leu1157*	727	novel	stop-gain		DC

Patient S-001

Patient S-002

c.2894A>G Asn965Ser (N965S) Read depth: 1964 G allele (%): 49.8% c.4972A>C Ser1658Arg (S1658R) Read depth: 1658 C allele (%): 50.8%

Patient S-001

ABCA4 exon 8 c.983A>T (Glu328Val)

ABCA4 exon 13 c.1933G>A(Asp645Asn)

ABCA4 exon 21 c.3106G>A(Glu1036Lys)

Patient S-002

CACCGTCATTAGCCAACCCCTC

ABCA4 exon 19 c.2894A>G (Asn965Ser)

ABCA4 exon 35 c.4972A>C (Ser1658Arg)

- Proband
 - 36 years old
 - Hypergonadotropic hypogonadism
 - FSH: >100mIU; LH: 32.5mIU; E2: 5.7pg/ml
 - Small uterus, atrophic ovaries, absent antral follicles • in both ovaries

- Whole exome sequencing of the proband and her mother
 - Trusight OneSequencing Panel (Illumina, San Diego, CA, USA)
 - HiSeq500 sequencer (paired-end 2 × 150)
 - Sequencing reads reached 20X coverage or more in 95% of regions in the target exome
 - Alignment to human reference assembly (GRCh37.p13)

Gene	Position	SNP ID	cDNA change	Protein change	1000 G MAF	KRG	Prediction (Poly Phen2 / SIFT)	Genotype		
DDX54	Chr12:-113596897	rs201014565	c.2434G>A	p.A812T	0.00092	0.00161	В/Т	P(HetAlt) M(H		
DSG2	Chr18:-29126558	rs149617776	c.3209C>T	p.T1070M	0.00595	0.01045	В/Т	Alt)		
GDF9	Chr5:-132200057	rs138136756	c.169G>T	p.D57Y	0.00458	0.03376	В/Т			
GPAM	Chr10:-113917134	NA	c.1994A>G	p.E665G	NA	0.00046	PD / D			
MDK	Chr11:-46404341	NA	c.449C>G	p.A150G	0.00004	NA	B / NA			
NOTCH1	Chr9:-139391211	rs202065858	c.6980G>A	p.R2327Q	0.00092	0.00080	В / Т			
NPPC	Chr2:-232790385	rs80022541	c.131A>G	p.Q44R	0.00458	0.00402	B / D	-		
NSD1	Chr5:-176562115	NA	c.11C>A	p.T4N	0.00001	NA	B/D			
PNPLA8	Chr7:-108155171	NA	c.764delC	p.A255 framesh ift	NA	NA	NA / NA			
PSPH	Chr7:-56087300	rs75395437	c.268G>A	p.G90S	0.00506	0.00804	P/D			
	Chr7:-56087319	rs73343757	c.249A>C	p.Q83H	0.00851	0.00080	В/Т			
SSTR3	Chr22:-37602809	rs202051882	c.1034C>T	p.P345L	0.00046	0.00482	В / Т			
TMF1	Chr3:-69082833	rs147346094	c.2276G>A	p.R759Q	0.00366	0.01125	PD / D			
TNC	Chr9:-117848187	NA	c.1823G>A	p.R608H	0.00010	0.00080	В / Т			

- NPPC
 - C-type natriuretic peptide (CNP)-encoding gene
 - Involved in follicle growth at the preantral stage
 - Prevents precocious resumption of oocyte meiosis

The mutation of *NPPC* leads to abnormal peptide cleavage, resulting in a decrease in cGMP levels and meiotic resumption, it could induce an exhaustion of follicular reserve or failure of follicular development.

- 10 hESc lines
- CpG island methylation levels of 24 tumor suppressor genes were analyzed
- Methylation specific MLPA, pyrosequencing, real-time PCR

Methylation level of the three genes (*CASP8, FHIT, CHFR*) between early passage and late passage of 10 cell lines using MS-MLPA and pyrosequencing.

- During extended cultures, human embryonic stem cell lines may not undergo large genomic alterations such as chromosome abnormalities but show alterations in CGI methylation levels of tumor suppressor genes.
- To use hESC lines for cell therapy, it would be imperative to closely verify structural variations at the chromosome or genome level as well as the epigenetic changes.

Expression level of the three genes between early passage and late passage of 10 cell lines using real-time PCR analysis. Expression ratio of the *CASP8* gene (a), *FHIT* gene (b), and *CHFR* gene in iPS (FS)-1 cell (c).

감사합니다.